The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Compactification of the space of vector bundles on a singular curve.”

The Brauer group of desingularization of moduli spaces of vector bundles over a curve

Indranil Biswas, Amit Hogadi, Yogish Holla (2012)

Open Mathematics

Similarity:

Let C be an irreducible smooth projective curve, of genus at least two, defined over an algebraically closed field of characteristic zero. For a fixed line bundle L on C, let M C (r; L) be the coarse moduli space of semistable vector bundles E over C of rank r with ∧r E = L. We show that the Brauer group of any desingularization of M C(r; L) is trivial.

Compactifications of moduli spaces of (semi)stable bundles on singular curves: two points of view.

Montserrat Teixidor i Bigas (1998)

Collectanea Mathematica

Similarity:

Moduli spaces of vector bundles on families of non-singular curves are usually compactified by considering (slope)semistable bundles on stable curves. Alternatively, one could consider Hilbert-stable curves in Grassmannians. We study some properties of the latter and compare them with similar properties of curves coming from the former compactification. This leads to a new interpretation of the moduli space of (semi)stable torsion-free sheaves on a fixed nodal curve. One can present...