Displaying similar documents to “A proof of Ilieff's conjecture for polynomials with four zeros.”

Generalization of a Conjecture in the Geometry of Polynomials

Sendov, Bl. (2002)

Serdica Mathematical Journal

Similarity:

In this paper we survey work on and around the following conjecture, which was first stated about 45 years ago: If all the zeros of an algebraic polynomial p (of degree n ≥ 2) lie in a disk with radius r, then, for each zero z1 of p, the disk with center z1 and radius r contains at least one zero of the derivative p′ . Until now, this conjecture has been proved for n ≤ 8 only. We also put the conjecture in a more general framework involving higher order derivatives and sets defined by...

Smale's Conjecture on Mean Values of Polynomials and Electrostatics

Dimitrov, Dimitar (2007)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: Primary 30C10, 30C15, 31B35. A challenging conjecture of Stephen Smale on geometry of polynomials is under discussion. We consider an interpretation which turns out to be an interesting problem on equilibrium of an electrostatic field that obeys the law of the logarithmic potential. This interplay allows us to study the quantities that appear in Smale’s conjecture for polynomials whose zeros belong to certain specific regions. A conjecture...

An update on a few permanent conjectures

Fuzhen Zhang (2016)

Special Matrices

Similarity:

We review and update on a few conjectures concerning matrix permanent that are easily stated, understood, and accessible to general math audience. They are: Soules permanent-on-top conjecture†, Lieb permanent dominance conjecture, Bapat and Sunder conjecture† on Hadamard product and diagonal entries, Chollet conjecture on Hadamard product, Marcus conjecture on permanent of permanents, and several other conjectures. Some of these conjectures are recently settled; some are still open.We...