On the Geometrisation Conjecture

G. Besson

Bollettino dell'Unione Matematica Italiana (2009)

  • Volume: 2, Issue: 1, page 245-257
  • ISSN: 0392-4041

How to cite

top

Besson, G.. "On the Geometrisation Conjecture." Bollettino dell'Unione Matematica Italiana 2.1 (2009): 245-257. <http://eudml.org/doc/290566>.

@article{Besson2009,
author = {Besson, G.},
journal = {Bollettino dell'Unione Matematica Italiana},
language = {eng},
month = {2},
number = {1},
pages = {245-257},
publisher = {Unione Matematica Italiana},
title = {On the Geometrisation Conjecture},
url = {http://eudml.org/doc/290566},
volume = {2},
year = {2009},
}

TY - JOUR
AU - Besson, G.
TI - On the Geometrisation Conjecture
JO - Bollettino dell'Unione Matematica Italiana
DA - 2009/2//
PB - Unione Matematica Italiana
VL - 2
IS - 1
SP - 245
EP - 257
LA - eng
UR - http://eudml.org/doc/290566
ER -

References

top
  1. BESSIÈRES, L., Conjecture de Poincaré : la preuve de R. Hamilton and G. Perelman, La gazette des mathématiciens, 106 (2005). MR3087240
  2. BESSIÈRES, L. - BESSON, G. - BOILEAU, M. - MAILLOT, S. - PORTI, J., Geometrization of 3-manifolds, Monograph in preparation. 
  3. BESSIÈRES, L. - BESSON, G. - BOILEAU, M. - MAILLOT, S. - PORTI, J., Weak collapsing and geometrisation of aspherical 3-manifolds, arXiv:0706.2065 January 2008. 
  4. BESSON, G., The Geometrization Conjecture after R. Hamilton and G. Perelman, To appear in Rendiconti del Seminario Matematico, Torino. MR2402852
  5. BESSON, G., Preuve de la conjecture de Poincaré en déformant la métrique par la courbure de Ricci (d'après Perelman), In Séminaire Bourbaki 2004-2005, Astérisque, 307, 309-348. Société mathématiques de France, Paris, France, 2006. MR2296423
  6. BOILEAU, M. - PORTI, J., Geometrization of 3-orbifolds of cyclic type, Astérisque, 272 (2001), 208. Appendix A by Michael Heusener and Porti. MR1844891
  7. BOILEAU, M. - LEEB, B. - PORTI, J., Geometrization of 3-dimensional orbifolds, Ann. of Math. (2) 162 (1) (2005), 195-290. Zbl1087.57009MR2178962DOI10.4007/annals.2005.162.195
  8. BOILEAU, M. - MAILLOT, S. - PORTI, J., Three-dimensional orbifolds and their geometric structures, volume 15 of Panoramas and Synthèses. Société Mathématique de France, Paris2003. MR2060653
  9. BOURGUIGNON, J.-P., L'équation de la chaleur associée à la courbure de Ricci, In Séminaire Bourbaki 1985-86, Astérisque, 45-61. Société Mathématique de France1987. MR880025
  10. CAO, H.-D. - ZHU, X.-P., A Complete Proof of the Poincaré and Geometrization Conjectures and application of the Hamilton-Perelman theory of the Ricci flow, Asian Journal of Mathematics, 10 (2) (2006), 165-492. Zbl1200.53057MR2233789DOI10.4310/AJM.2006.v10.n2.a2
  11. CHOW, B. - KNOPF, D., The Ricci flow: an introduction, Mathematical surveys and monographs, 110A.M.S.2004. MR2061425DOI10.1090/surv/110
  12. GROMOV, M., Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math., 56:5-99 (1983), 1982. MR686042
  13. HAMILTON, R., Three-manifolds with positive Ricci curvature, J. Differential Geometry, 17 (1982), 255-306. Zbl0504.53034MR664497
  14. HAMILTON, R., Four-manifolds with positive curvature operator, J. Differential Geometry, 24, 153-179 (1986). Zbl0628.53042MR862046
  15. HEMPEL, J., 3-manifolds, Annals of mathematics studies, 086, Princeton University PressPrinceton, 1976. MR415619
  16. KAPOVITCH, V., Perelman's Stability Theorem. ArXiv: math.DG/0703002, 13 mars, 2007. MR2408265DOI10.4310/SDG.2006.v11.n1.a5
  17. KLEINER, B. - LOTT, J., Notes on Perelman's papers, ArXiv: math.DG/0605667, 25 mai, 2006. MR2460872DOI10.2140/gt.2008.12.2587
  18. MAILLOT, S.. Some application of the Ricci flow to 3-manifolds, Séminaire de théorie spectrale et géométrie, 25, 2006-2007. MR2478812DOI10.5802/tsg.251
  19. MCMULLEN, C. T., Minkowski's conjecture, well-rounded lattices and topological dimension, J. Amer. Math. Soc., 18 (3) (2005), 711-734 (electronic) Zbl1132.11034MR2138142DOI10.1090/S0894-0347-05-00483-2
  20. MORGAN, J. - TIAN, G., Ricci Flow and the Poincaré Conjecture, Clay mathematics monographs, 3, American Mathematical Society, 2007. MR2334563
  21. PERELMAN, G., The entropy formula for the Ricci flow and its geometric applications. ArXiv: math.DG/0211159, november, 2002. 
  22. PERELMAN, G., Ricci flow with surgery on three-manifolds, ArXiv: math.DG/0303109, mars, 2003. 
  23. POENARU, V.Poincaré and l'hypersphère, Pour la Science, Dossier hors-série n. 41 (2003), 52-57. 
  24. POINCARÉ, H., Cinquième complément à l'analysis situs, Rend. Circ. Mat. Palermo, 18 (1904), 45-110. Zbl35.0504.13
  25. SCOTT, P., The geometries of 3-manifolds, Bull. London Math. Soc., 15, (1983), 401-487. Zbl0561.57001MR705527DOI10.1112/blms/15.5.401
  26. THURSTON, W. P., Three-dimensional manifolds, Kleinian groups and hyperbolic geometry, Bulletin of the Amer. Math. Soc., 6, (3) (1982), 357-381. MR648524DOI10.1090/S0273-0979-1982-15003-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.