On the Functional Equation of Certain Dirichlet Series.
K. DOI, H. NAGANUMA (1969/70)
Inventiones mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
K. DOI, H. NAGANUMA (1969/70)
Inventiones mathematicae
Similarity:
H.L. MONTGOMERY (1969)
Inventiones mathematicae
Similarity:
Christian Berg (1973)
Inventiones mathematicae
Similarity:
Jeffrey Hoffstein, Dorian Goldfeld (1985)
Inventiones mathematicae
Similarity:
David J. Platt, Sumaia Saad Eddin (2013)
Colloquium Mathematicae
Similarity:
Let χ be a primitive Dirichlet character of conductor q and denote by L(z,χ) the associated L-series. We provide an explicit upper bound for |L(1,χ)| when 3 divides q.
Frédéric Bayart (2004)
Acta Arithmetica
Similarity:
H. M. Bui, D. R. Heath-Brown (2010)
Acta Arithmetica
Similarity:
A. Mallik (1981)
Acta Arithmetica
Similarity:
Zhefeng Xu, Wenpeng Zhang (2007)
Acta Arithmetica
Similarity:
Mitsuru Nakai, Leo Sario (1971)
Mathematische Zeitschrift
Similarity:
Kohji Matsumoto, Hirofumi Tsumura (2006)
Acta Arithmetica
Similarity:
J.C. Taylor (1972)
Inventiones mathematicae
Similarity: