Eigenvalue asymptotics for the Schrödinger operator with perturbed periodic potential.
G.D. Raikov (1992)
Inventiones mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
G.D. Raikov (1992)
Inventiones mathematicae
Similarity:
H. Knörrer, J. Feldman, E. Trubowitz (1990)
Inventiones mathematicae
Similarity:
Marek Burnat, Jan Herczyński, Bogdan Zawisza (1987)
Banach Center Publications
Similarity:
Rainer Hempel (1984)
Manuscripta mathematica
Similarity:
J. Weidmann (1987)
Mathematische Annalen
Similarity:
Th. Kappeler (1990)
Commentarii mathematici Helvetici
Similarity:
Masahiro Kaminaga (1996)
Forum mathematicum
Similarity:
Hubert Kalf, Rainer Hempel, Andreas M. Hinz (1987)
Mathematische Annalen
Similarity:
H. Krüger (2010)
Mathematical Modelling of Natural Phenomena
Similarity:
In this note, I wish to describe the first order semiclassical approximation to the spectrum of one frequency quasi-periodic operators. In the case of a sampling function with two critical points, the spectrum exhibits two gaps in the leading order approximation. Furthermore, I will give an example of a two frequency quasi-periodic operator, which has no gaps in the leading order of the semiclassical approximation.
G. Eskin (1988-1989)
Séminaire Équations aux dérivées partielles (Polytechnique)
Similarity:
Artur Avila, Svetlana Jitomirskaya (2010)
Journal of the European Mathematical Society
Similarity:
Mikhail V. Novitskii (1999-2000)
Séminaire de théorie spectrale et géométrie
Similarity: