Displaying similar documents to “The equations of conjugacy classes of nilpotent matrices.”

On Kolchin's theorem.

Israel N. Herstein (1986)

Revista Matemática Iberoamericana

Similarity:

A well-known theorem due to Kolchin states that a semi-group G of unipotent matrices over a field F can be brought to a triangular form over the field F [4, Theorem H]. Recall that a matrix A is called unipotent if its only eigenvalue is 1, or, equivalently, if the matrix I - A is nilpotent. Many years ago I noticed that this result of Kolchin is an immediate consequence of a too-little known result due to Wedderburn [6]. This result of Wedderburn asserts that if B is a finite...

On the linear capacity of algebraic cones

Marcin Skrzyński (2002)

Mathematica Bohemica

Similarity:

We define the linear capacity of an algebraic cone, give basic properties of the notion and new formulations of certain known results of the Matrix Theory. We derive in an explicit way the formula for the linear capacity of an irreducible component of the zero cone of a quadratic form over an algebraically closed field. We also give a formula for the linear capacity of the cone over the conjugacy class of a “generic” non-nilpotent matrix.