The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Practical aspects of interval computation”

Set arithmetic and the enclosing problem in dynamics

Marian Mrozek, Piotr Zgliczyński (2000)

Annales Polonici Mathematici

Similarity:

We study the enclosing problem for discrete and continuous dynamical systems in the context of computer assisted proofs. We review and compare the existing methods and emphasize the importance of developing a suitable set arithmetic for efficient algorithms solving the enclosing problem.

A Mathematical Basis for an Interval Arithmetic Standard

Bohlender, Gerd, Kulisch, Ulrich (2010)

Serdica Journal of Computing

Similarity:

Basic concepts for an interval arithmetic standard are discussed in the paper. Interval arithmetic deals with closed and connected sets of real numbers. Unlike floating-point arithmetic it is free of exceptions. A complete set of formulas to approximate real interval arithmetic on the computer is displayed in section 3 of the paper. The essential comparison relations and lattice operations are discussed in section 6. Evaluation of functions for interval arguments is studied in section...

Formally certified floating-point filters for homogeneous geometric predicates

Guillaume Melquiond, Sylvain Pion (2007)

RAIRO - Theoretical Informatics and Applications

Similarity:

Floating-point arithmetic provides a fast but inexact way of computing geometric predicates. In order for these predicates to be exact, it is important to rule out all the numerical situations where floating-point computations could lead to wrong results. Taking into account all the potential problems is a tedious work to do by hand. We study in this paper a floating-point implementation of a filter for the orientation-2 predicate, and how a formal and partially automatized verification...

Loss of Accuracy in Numerical Computations Загуба на точност в числените пресмятания

Konstantinov, Mihail, Petkov, Petko (2011)

Union of Bulgarian Mathematicians

Similarity:

Михаил М. Константинов, Петко Х. Петков - Разгледани са възможните катастрофални ефекти от неправилното използване на крайна машинна аритметика с плаваща точка. За съжаление, тази тема не винаги се разбира достатъчно добре от студентите по приложна и изчислителна математика, като положението в инженерните и икономическите специалности в никакъв случай не е по-добро. За преодоляване на този образователен пропуск тук сме разгледали главните виновници за загубата на точност при числените компютърни...