The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Evaluation of the half-periods of the Weierstrass -function for the absolute invariant greater than one”

Norm estimates of discrete Schrödinger operators

Ryszard Szwarc (1998)

Colloquium Mathematicae

Similarity:

Harper’s operator is defined on 2 ( Z ) by H θ ξ ( n ) = ξ ( n + 1 ) + ξ ( n - 1 ) + 2 cos n θ ξ ( n ) , where θ [ 0 , π ] . We show that the norm of H θ is less than or equal to 2 2 for π / 2 θ π . This solves a conjecture stated in [1]. A general formula for estimating the norm of self-adjoint tridiagonal infinite matrices is also derived.

On an approximation property of Pisot numbers II

Toufik Zaïmi (2004)

Journal de Théorie des Nombres de Bordeaux

Similarity:

Let q be a complex number, m be a positive rational integer and l m ( q ) = inf { P ( q ) , P m [ X ] , P ( q ) 0 } , where m [ X ] denotes the set of polynomials with rational integer coefficients of absolute value m . We determine in this note the maximum of the quantities l m ( q ) when q runs through the interval ] m , m + 1 [ . We also show that if q is a non-real number of modulus > 1 , then q is a complex Pisot number if and only if l m ( q ) > 0 for all m .