Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity

Eduard Feireisl

Aplikace matematiky (1990)

  • Volume: 35, Issue: 3, page 184-191
  • ISSN: 0862-7940

Abstract

top
A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of L - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.

How to cite

top

Feireisl, Eduard. "Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity." Aplikace matematiky 35.3 (1990): 184-191. <http://eudml.org/doc/15623>.

@article{Feireisl1990,
abstract = {A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty $ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.},
author = {Feireisl, Eduard},
journal = {Aplikace matematiky},
keywords = {invariant region; vanishing viscosity; nonlinear parabolic system; quasilinear one- dimensional telegraph equation; vanishing viscosity; viscosity regularization; quasilinear one- dimensional telegraph equation; generalized invariant regions},
language = {eng},
number = {3},
pages = {184-191},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity},
url = {http://eudml.org/doc/15623},
volume = {35},
year = {1990},
}

TY - JOUR
AU - Feireisl, Eduard
TI - Time-dependent invariant regions for parabolic systems related to one- dimensional nonlinear elasticity
JO - Aplikace matematiky
PY - 1990
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 35
IS - 3
SP - 184
EP - 191
AB - A parabolic system arisng as a viscosity regularization of the quasilinear one-dimensional telegraph equation is considered. The existence of $L \infty $ - a priori estimates, independent of viscosity, is shown. The results are achieved by means of generalized invariant regions.
LA - eng
KW - invariant region; vanishing viscosity; nonlinear parabolic system; quasilinear one- dimensional telegraph equation; vanishing viscosity; viscosity regularization; quasilinear one- dimensional telegraph equation; generalized invariant regions
UR - http://eudml.org/doc/15623
ER -

References

top
  1. K. N. Chueh C. C. Conley J. A. Smoller, Positively invariant regions for systems of non linear diffusion equations, Indiana Univ. Math. J. 26 (1977), 372-7411. (1977) MR0430536
  2. C. M. Dafermos, 10.1137/0518031, SIAM J. Math. Anal. 18 (1987), 409-421. (1987) Zbl0655.35055MR0876280DOI10.1137/0518031
  3. R. J. DiPerna, 10.1007/BF00251724, Arch. Rational Mech. Anal. 82 (1983), 27-70. (1983) Zbl0519.35054MR0684413DOI10.1007/BF00251724
  4. M. Rascle, Un résultat de ,,compacité par compensation à coefficients variables". Application à l'élasticité nonlinéaire, Compt. Rend. Acad. Sci. Paris, Série I, 302 (1986), 311 - 314. (1986) MR0838582
  5. D. Serre, 10.1016/0022-0396(87)90102-1, J. Differential Equations 69 (1987), 46-62. (1987) Zbl0626.35061MR0897440DOI10.1016/0022-0396(87)90102-1
  6. D. Serre, La compacité par compensation pour les systèmes hyperboliques non linéaires de deux équations a une dimension d'espace, J. Math. pures et appl. 65 (1986), 423 - 468. (1986) MR0881690
  7. T. D. Venttseľ, 10.1007/BF02107558, Soviet Math. J., 31 (1985), 3148- --3153. (1985) DOI10.1007/BF02107558
  8. E. Feireisl, Compensated compactness and time-periodic solutions to non-autonomous quasilinear telegraph equations, Apl. mat. 35 (1990), 192-208. (1990) Zbl0737.35040MR1052740

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.