Displaying similar documents to “Curvature of the Induced Riemannian Metric on the Tangent Bundle of a Riemannian Manifold.”

g -natural metrics of constant curvature on unit tangent sphere bundles

M. T. K. Abbassi, Giovanni Calvaruso (2012)

Archivum Mathematicum

Similarity:

We completely classify Riemannian g -natural metrics of constant sectional curvature on the unit tangent sphere bundle T 1 M of a Riemannian manifold ( M , g ) . Since the base manifold M turns out to be necessarily two-dimensional, weaker curvature conditions are also investigated for a Riemannian g -natural metric on the unit tangent sphere bundle of a Riemannian surface.

Curvatures of the diagonal lift from an affine manifold to the linear frame bundle

Oldřich Kowalski, Masami Sekizawa (2012)

Open Mathematics

Similarity:

We investigate the curvature of the so-called diagonal lift from an affine manifold to the linear frame bundle LM. This is an affine analogue (but not a direct generalization) of the Sasaki-Mok metric on LM investigated by L.A. Cordero and M. de León in 1986. The Sasaki-Mok metric is constructed over a Riemannian manifold as base manifold. We receive analogous and, surprisingly, even stronger results in our affine setting.