Rigidity in non-negative curvature
Annales scientifiques de l'École Normale Supérieure (1997)
- Volume: 30, Issue: 5, page 595-603
- ISSN: 0012-9593
Access Full Article
topHow to cite
topGuijarro, Luis, and Petersen, Peter. "Rigidity in non-negative curvature." Annales scientifiques de l'École Normale Supérieure 30.5 (1997): 595-603. <http://eudml.org/doc/82444>.
@article{Guijarro1997,
author = {Guijarro, Luis, Petersen, Peter},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {open manifold},
language = {eng},
number = {5},
pages = {595-603},
publisher = {Elsevier},
title = {Rigidity in non-negative curvature},
url = {http://eudml.org/doc/82444},
volume = {30},
year = {1997},
}
TY - JOUR
AU - Guijarro, Luis
AU - Petersen, Peter
TI - Rigidity in non-negative curvature
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1997
PB - Elsevier
VL - 30
IS - 5
SP - 595
EP - 603
LA - eng
KW - open manifold
UR - http://eudml.org/doc/82444
ER -
References
top- [1] BERESTOVSKII, A metric characterization of Riemannian submersions of smooth Riemannian manifolds, in preparation.
- [2] J. CHEEGER, Finiteness theorems for Riemannian manifolds, (Am. J. Math., Vol. 92, 1970, pp. 61-75). Zbl0194.52902MR41 #7697
- [3] J. CHEEGER and D. GROMOLL, The structure of complete manifolds with nonnegative curvature, (Ann. Math., 96, 1972, pp. 413-443). Zbl0246.53049MR46 #8121
- [4] J. ESCHENBURG, V. SCHROEDER and M. STRAKE, Curvature at infinity of open nonnegatively curved manifolds, (J. Diff. Geo., Vol. 30, 1989, pp. 155-166). Zbl0678.53031MR90e:53051
- [5] R. E. GREENE and H. WU, Lipschitz Convergence of Riemannian manifolds, (Pac. J. Math., Vol. 131, 1988, pp. 119-143). Zbl0646.53038MR89g:53063
- [6] M. GROMOV, Almost flat manifolds, (J. Diff. Geo., Vol. 13, 1978, pp. 231-241). Zbl0432.53020MR80h:53041
- [7] K. GROVE and P. PETERSEN, Manifolds near the boundary of existence, (J. Diff. Geo., Vol. 33, 1991, pp. 379-394). Zbl0729.53045MR92a:53067
- [8] K. GROVE, and P. PETERSEN, Excess and rigidity of inner metric spaces, preprint.
- [9] L. GUIJARRO, Ph. D. Thesis 1995, University of Maryland, College Park.
- [10] R. HERMANN, A sufficient condition that a mapping of Riemannian manifolds be a fibre bundle., (PAMS, Vol. 11, 1960, pp. 236-242). Zbl0112.13701MR22 #3006
- [11] Ch. LOIBL, Riemannsche Raume mit nicht-negativer Krummung, Reports des Institut fur Mathematik der Universität Augsburg, n/o 249, Augsburg (1991).
- [12] V. B. MARENICH, The topological gap phenomenon for open manifolds of nonnegative curvature, (Sov. Math. Dokl. 32, 1985, pp. 440-443). Zbl0593.53028MR87c:53085
- [13] I. G. NIKOLAEV, Parallel translation and smoothness of the metric of spaces of bounded curvature, Dokl. Akad. Nauk SSSR, Vol. 250, 1980, pp. 1056-1058). Zbl0505.53015MR81d:53052
- [14] G. PEREL'MAN, Proof of the soul conjecture of Cheeger and Gromoll, (J. Diff. Geo., Vol. 40, 1994, pp. 209-212). Zbl0818.53056MR95d:53037
- [15] S. PETERS, Convergence of Riemannian manifolds, (Comp. Math., Vol. 62, 1987, pp. 3-16). Zbl0618.53036MR88i:53076
- [16] P. PETERSEN, Convergence theorems in Riemannian geometry, preprint. Zbl0898.53035
- [17] P. PETERSEN, Rigidity of fibrations in nonnegative curvature, preprint.
- [18] W. A. POOR, Some results on nonnegatively curved manifolds, (J. Diff. Geo., Vol. 9, 1974, pp. 583-600). Zbl0292.53037MR51 #11351
- [19] V. SHARAFUTDINOV, Pogorelov-Klingenberg theorem for manifolds homeomorphic to ℝn., (Sibirsk Math. Zh., Vol. 18, 1977, pp. 915-925). Zbl0411.53031
- [20] G. WALSCHAP, Metric foliations and curvature, (J. Geo. Anal., Vol. 2, 1992, pp. 373-381). Zbl0769.53021MR93g:53042
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.