Jacobians of Drinfeld modular curves.
E.-U. Gekeler, M. Reversat (1996)
Journal für die reine und angewandte Mathematik
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
E.-U. Gekeler, M. Reversat (1996)
Journal für die reine und angewandte Mathematik
Similarity:
Noriko Yui (1978)
Journal für die reine und angewandte Mathematik
Similarity:
K.A. Ribet (1990)
Inventiones mathematicae
Similarity:
Daeyeol Jeon, Euisung Park (2005)
Acta Arithmetica
Similarity:
Harris Hancock (1898)
Journal für die reine und angewandte Mathematik
Similarity:
Matija Kazalicki, Koji Tasaka (2014)
Acta Arithmetica
Similarity:
Kaneko and Sakai (2013) recently observed that certain elliptic curves whose associated newforms (by the modularity theorem) are given by the eta-quotients can be characterized by a particular differential equation involving modular forms and Ramanujan-Serre differential operator. In this paper, we study certain properties of the modular parametrization associated to the elliptic curves over ℚ, and as a consequence we generalize and explain some of their findings. ...
Ki-Seng Tan, Daniel Rockmore (1992)
Journal für die reine und angewandte Mathematik
Similarity:
Daeyeol Jeon, Chang Heon Kim (2004)
Acta Arithmetica
Similarity:
François Brunault (2008)
Acta Arithmetica
Similarity:
Noriko Yui (1978)
Journal für die reine und angewandte Mathematik
Similarity:
Andreas Enge, Reinhard Schertz (2005)
Acta Arithmetica
Similarity:
Harris Hancock (1900)
Journal für die reine und angewandte Mathematik
Similarity:
R. Weissauer (1992)
Journal für die reine und angewandte Mathematik
Similarity:
Michael A. Bennett, Imin Chen, Sander R. Dahmen, Soroosh Yazdani (2014)
Acta Arithmetica
Similarity:
We study coprime integer solutions to the equation a³ + b³ⁿ = c² using Galois representations and modular forms. This case represents perhaps the last natural family of generalized Fermat equations descended from spherical cases which is amenable to resolution using the so-called modular method. Our techniques involve an elaborate combination of ingredients, ranging from ℚ-curves and a delicate multi-Frey approach, to appeal to intricate image of inertia arguments.
S. Kamienny (1985)
Journal für die reine und angewandte Mathematik
Similarity:
G. Frey (1982)
Journal für die reine und angewandte Mathematik
Similarity:
A. Cayley (1876)
Journal für die reine und angewandte Mathematik
Similarity: