# On modular representations of Gal (.../Q) arising from modular forms.

Inventiones mathematicae (1990)

- Volume: 100, Issue: 2, page 431-476
- ISSN: 0020-9910; 1432-1297/e

## Access Full Article

top## How to cite

topRibet, K.A.. "On modular representations of Gal (.../Q) arising from modular forms.." Inventiones mathematicae 100.2 (1990): 431-476. <http://eudml.org/doc/143793>.

@article{Ribet1990,

author = {Ribet, K.A.},

journal = {Inventiones mathematicae},

keywords = {modularity of curves; Shimura curves; Jacobians; Fermat's last theorem; conjecture of Serre; modular Galois representation; Taniyama-Shimura-Weil conjecture},

number = {2},

pages = {431-476},

title = {On modular representations of Gal (.../Q) arising from modular forms.},

url = {http://eudml.org/doc/143793},

volume = {100},

year = {1990},

}

TY - JOUR

AU - Ribet, K.A.

TI - On modular representations of Gal (.../Q) arising from modular forms.

JO - Inventiones mathematicae

PY - 1990

VL - 100

IS - 2

SP - 431

EP - 476

KW - modularity of curves; Shimura curves; Jacobians; Fermat's last theorem; conjecture of Serre; modular Galois representation; Taniyama-Shimura-Weil conjecture

UR - http://eudml.org/doc/143793

ER -

## Citations in EuDML Documents

top- Luis Dieulefait, Xavier Taixés i Ventosa, Congruences between modular forms and lowering the level mod ${\ell}^{n}$
- Florence Gillibert, Points rationnels sur les quotients d’Atkin-Lehner de courbes de Shimura de discriminant $pq$
- Michael A. Bennett, The equation ${x}^{2n}+{y}^{2n}={z}^{5}$
- Samir Siksek, Diophantine equations after Fermat’s last theorem
- Kenneth A. Ribet, Wiles dokázal Taniyamovu hypotézu; důsledkem je Fermatova věta
- Samir Siksek, On the diophantine equation ${x}^{2}={y}^{p}+{2}^{k}{z}^{p}$
- Kenneth A. Ribet, On the equation ${a}^{p}+{2}^{\alpha}{b}^{p}+{c}^{p}=0$
- Gerhard Frey, The Way to the Proof of Fermat’s Last Theorem
- Marius Van Der Put, Discrete groups, Mumford curves and Theta functions
- Andrea Mori, Lea Terracini, A canonical map between Hecke algebras

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.