Displaying similar documents to “Some examples concerning applicability of the Fredholm-Radon method in potential theory”

Essential norms of the Neumann operator of the arithmetical mean

Josef Král, Dagmar Medková (2001)

Mathematica Bohemica

Similarity:

Let K m ( m 2 ) be a compact set; assume that each ball centered on the boundary B of K meets K in a set of positive Lebesgue measure. Let C 0 ( 1 ) be the class of all continuously differentiable real-valued functions with compact support in m and denote by σ m the area of the unit sphere in m . With each ϕ C 0 ( 1 ) we associate the function W K ϕ ( z ) = 1 σ m m K g r a d ϕ ( x ) · z - x | z - x | m x of the variable z K (which is continuous in K and harmonic in K B ). W K ϕ depends only on the restriction ϕ | B of ϕ to the boundary B of K . This gives rise to a linear operator W K ...

Regularity properties of the equilibrium distribution

Hans Wallin (1965)

Annales de l'institut Fourier

Similarity:

Soit F un sous-ensemble compact de R m ayant des points intérieurs et soit μ α F la distribution d’équilibre sur F de masse totale 1 par rapport au noyau r α - m avec 0 < α < 2 pour m 2 , et 0 < α < 1 pour m = 1 . La restriction de μ α F à l’intérieur de F est absolument continue et a pour densité f α F . On donne une formule explicite pour f α F et, pour une classe générale d’ensembles F , on démontre que f α F , définie en réalité sur un ensemble de mesure de Lebesgue nulle, croît comme la distance à la frontière F de F élevée à la puissance...

Unique continuation for Schrödinger operators in dimension three or less

Eric T. Sawyer (1984)

Annales de l'institut Fourier

Similarity:

We show that the differential inequality | Δ u | v | u | has the unique continuation property relative to the Sobolev space H l o c 2 , 1 ( Ω ) , Ω R n , n 3 , if v satisfies the condition ( K n loc ) lim r 0 sup x K | x - y | < r | x - y | 2 - n v ( y ) d y = 0 for all compact K Ω , where if n = 2 , we replace | x - y | 2 - n by - log | x - y | . This resolves a conjecture of B. Simon on unique continuation for Schrödinger operators, H = - Δ + v , in the case n 3 . The proof uses Carleman’s approach together with the following pointwise inequality valid for all N = 0 , 1 , 2 , ... and any u H c 2 , 1 ( R 3 - { 0 } ) , | u ( x ) | | x | N C R 3 | x - y | - 1 | Δ u ( y ) | | y | N d y for a.e. x in R 3 .