Displaying similar documents to “Blow-Up of Solutions of Nonlinear Wave Equations in Three Space Dimensions.”

Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping

Lorena Bociu, Irena Lasiecka (2008)

Applicationes Mathematicae

Similarity:

We focus on the blow-up in finite time of weak solutions to the wave equation with interior and boundary nonlinear sources and dissipations. Our central interest is the relationship of the sources and damping terms to the behavior of solutions. We prove that under specific conditions relating the sources and the dissipations (namely p > m and k > m), weak solutions blow up in finite time.

Blow-up of solutions for a viscoelastic equation with nonlinear damping

Yang Zhifeng (2008)

Open Mathematics

Similarity:

The initial boundary value problem for a viscoelastic equation with nonlinear damping in a bounded domain is considered. By modifying the method, which is put forward by Li, Tasi and Vitillaro, we sententiously proved that, under certain conditions, any solution blows up in finite time. The estimates of the life-span of solutions are also given. We generalize some earlier results concerning this equation.

On the nonlinear stabilization of the wave equation

Aissa Guesmia (1998)

Annales Polonici Mathematici

Similarity:

We obtain a precise decay estimate of the energy of the solutions to the initial boundary value problem for the wave equation with nonlinear internal and boundary feedbacks. We show that a judicious choice of the feedbacks leads to fast energy decay.