Infinite 2-class field towers of some imaginary quadratic number fields
Yutaka Sueyoshi (2004)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Yutaka Sueyoshi (2004)
Acta Arithmetica
Similarity:
Radan Kučera (2010)
Acta Arithmetica
Similarity:
Kostadinka Lapkova (2012)
Acta Arithmetica
Similarity:
Iwao Kimura (2003)
Acta Arithmetica
Similarity:
Sheng Chen, Hong You (2003)
Acta Arithmetica
Similarity:
R.W. Davis (1976)
Journal für die reine und angewandte Mathematik
Similarity:
Mark Coleman, Andrew Swallow (2005)
Acta Arithmetica
Similarity:
Toru Komatsu (2002)
Acta Arithmetica
Similarity:
Zdeněk Polický (2009)
Acta Arithmetica
Similarity:
Dongho Byeon (2008)
Acta Arithmetica
Similarity:
Iwao Kimura (2004)
Acta Arithmetica
Similarity:
Yoonjin Lee (2006)
Acta Arithmetica
Similarity:
Xiaobin Yin, Hourong Qin, Qunsheng Zhu (2005)
Acta Arithmetica
Similarity:
Manabu Murata (2006)
Acta Arithmetica
Similarity:
Carl Erickson, Nathan Kaplan, Neil Mendoza, Allison M. Pacelli, Todd Shayler (2007)
Acta Arithmetica
Similarity:
Stevenhagen, Peter (1993)
Experimental Mathematics
Similarity:
W. Narkiewicz (1967)
Colloquium Mathematicae
Similarity:
W. Narkiewicz (1967)
Colloquium Mathematicae
Similarity:
András Biró, Kostadinka Lapkova (2016)
Acta Arithmetica
Similarity:
We solve unconditionally the class number one problem for the 2-parameter family of real quadratic fields ℚ(√d) with square-free discriminant d = (an)²+4a for positive odd integers a and n.