A Note on the Problem -...u = ...u + u| u|2*-2.
M. Struwe, A. Ambrosetti (1986)
Manuscripta mathematica
Similarity:
M. Struwe, A. Ambrosetti (1986)
Manuscripta mathematica
Similarity:
Michael Struwe (1980)
Manuscripta mathematica
Similarity:
H. Berestycki, M. Gross, F. Pacella (1992)
Manuscripta mathematica
Similarity:
Olivier Rey (1989)
Manuscripta mathematica
Similarity:
Donato Passaseo (1989)
Manuscripta mathematica
Similarity:
Abdelouahed El Khalil, My Driss Morchid Alaoui, Abdelfattah Touzani (2014)
Applicationes Mathematicae
Similarity:
We study the existence of solutions for a p-biharmonic problem with a critical Sobolev exponent and Navier boundary conditions, using variational arguments. We establish the existence of a precise interval of parameters for which our problem admits a nontrivial solution.
Hans Wallin (1991)
Manuscripta mathematica
Similarity:
Myriam Comte, Mariette C. Knaap (1990)
Manuscripta mathematica
Similarity:
Keijo Hildén (1976)
Manuscripta mathematica
Similarity:
Gabriella Tarantello (1993)
Manuscripta mathematica
Similarity:
J. Chabrowski, P. Drábek (2002)
Studia Mathematica
Similarity:
We study the existence of nonnegative solutions of elliptic equations involving concave and critical Sobolev nonlinearities. Applying various variational principles we obtain the existence of at least two nonnegative solutions.
Sergio Solimini (1989)
Manuscripta mathematica
Similarity:
G. Fang, N. Choussoub (1992)
Manuscripta mathematica
Similarity:
J. Chabrowski, Jianfu Yang (2001)
Colloquium Mathematicae
Similarity:
We consider the Neumann problem for an elliptic system of two equations involving the critical Sobolev nonlinearity. Our main objective is to study the effect of the coefficient of the critical Sobolev nonlinearity on the existence and nonexistence of least energy solutions. As a by-product we obtain a new weighted Sobolev inequality.
Barbara Huisken (1989)
Manuscripta mathematica
Similarity:
Jan Chabrowski (2004)
Colloquium Mathematicae
Similarity:
We consider the Neumann problem involving the critical Sobolev exponent and a nonhomogeneous boundary condition. We establish the existence of two solutions. We use the method of sub- and supersolutions, a local minimization and the mountain-pass principle.
Samira Benmouloud-Sbai, Mohamed Guedda (2003)
Annales de la Faculté des sciences de Toulouse : Mathématiques
Similarity: