Big Schottky.
R. Donagi (1987)
Inventiones mathematicae
Similarity:
R. Donagi (1987)
Inventiones mathematicae
Similarity:
Yung-sheng Tai (1982)
Inventiones mathematicae
Similarity:
Herbert Popp (1973)
Inventiones mathematicae
Similarity:
L. Gerritzen (1990)
Journal für die reine und angewandte Mathematik
Similarity:
R. Silhol (1992)
Inventiones mathematicae
Similarity:
A.J. de Jong (1993)
Mathematische Annalen
Similarity:
Georg Schumacher (1985)
Manuscripta mathematica
Similarity:
Kok Onn Ng (1995)
Manuscripta mathematica
Similarity:
T. Figiel (1976)
Studia Mathematica
Similarity:
M. Seppäla, R. Silhol (1989)
Mathematische Zeitschrift
Similarity:
Marius van der Put (2011)
Banach Center Publications
Similarity:
This paper is a sequel to [vdP-Sa] and [vdP]. The two classes of differential modules (0,-,3/2) and (-,-,3), related to PII, are interpreted as fine moduli spaces. It is shown that these moduli spaces coincide with the Okamoto-Painlevé spaces for the given parameters. The geometry of the moduli spaces leads to a proof of the Painlevé property for PII in standard form and in the Flaschka-Newell form. The Bäcklund transformations, the rational solutions and the Riccati solutions for PII...
Jarod Alper (2013)
Annales de l’institut Fourier
Similarity:
We develop the theory of associating moduli spaces with nice geometric properties to arbitrary Artin stacks generalizing Mumford’s geometric invariant theory and tame stacks.
Rizov, Jordan (2006)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 14J28, 14D22. In this note we define moduli stacks of (primitively) polarized K3 spaces. We show that they are representable by Deligne-Mumford stacks over Spec(Z). Further, we look at K3 spaces with a level structure. Our main result is that the moduli functors of K3 spaces with a primitive polarization of degree 2d and a level structure are representable by smooth algebraic spaces over open parts of Spec(Z). To do this we use ideas...
Hans Jürgen Hoppe (1983)
Mathematische Annalen
Similarity: