Spacelike hypersurfaces with constant scalar curvature.
Qing-Ming Cheng, Susumu Ishikawa (1998)
Manuscripta mathematica
Similarity:
Qing-Ming Cheng, Susumu Ishikawa (1998)
Manuscripta mathematica
Similarity:
J.-H. Eschenburg (1987)
Manuscripta mathematica
Similarity:
Qing-Ming Cheng (1994)
Manuscripta mathematica
Similarity:
Knut Smoczyk (1998)
Manuscripta mathematica
Similarity:
Josef Dorfmeister, Erhard Neher (1983)
Manuscripta mathematica
Similarity:
Maria Luiza Leite (1990)
Manuscripta mathematica
Similarity:
Viktor Schroeder, Sebastian Goette (1995)
Manuscripta mathematica
Similarity:
Frank Duzaar (1996)
Manuscripta mathematica
Similarity:
Cícero P. Aquino, Henrique F. de Lima, Fábio R. dos Santos (2016)
Colloquium Mathematicae
Similarity:
We deal with complete spacelike hypersurfaces immersed with constant mean curvature in a Lorentzian space form. Under the assumption that the support functions with respect to a fixed nonzero vector are linearly related, we prove that such a hypersurface must be either totally umbilical or isometric to a hyperbolic cylinder of the ambient space.
Rolf Böning (1995)
Manuscripta mathematica
Similarity:
Gregory Galloway (1997)
Banach Center Publications
Similarity:
Martin Fuchs (1991)
Manuscripta mathematica
Similarity:
Toshiaki Adachi, Sadahiro Maeda (2005)
Czechoslovak Mathematical Journal
Similarity:
In this paper we characterize totally umbilic hypersurfaces in a space form by a property of the extrinsic shape of circles on hypersurfaces. This characterization corresponds to characterizations of isoparametric hypersurfaces in a space form by properties of the extrinsic shape of geodesics due to Kimura-Maeda.