On the discrepancy of inversive congruential pseudorandom numbers with prime power modulus, II.
Jürgen Eichenauer-Herrmann (1993)
Manuscripta mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Jürgen Eichenauer-Herrmann (1993)
Manuscripta mathematica
Similarity:
Richard H. Hudson (1983)
Manuscripta mathematica
Similarity:
Jean-Marie De Koninck, Imre Kátai (2011)
Acta Arithmetica
Similarity:
K.-K. Choi, M.-C. Liu, K.-M. Tsang (1992)
Manuscripta mathematica
Similarity:
Pieter Moree (1997)
Manuscripta mathematica
Similarity:
R.F. Tichy, P. Kirschenhofer (1986)
Manuscripta mathematica
Similarity:
J.F. Voloch, Arnaldo Garcia (1987)
Manuscripta mathematica
Similarity:
John B. Friedlander, Sergei Konyagin, Igor E. Shparlinski (2002)
Acta Arithmetica
Similarity:
Richard Hudson (1973)
Acta Arithmetica
Similarity:
R.F. Tichy, P. Kirschenhofer (1981)
Manuscripta mathematica
Similarity:
D. Landers, L. Rogge (1975)
Manuscripta mathematica
Similarity:
L. Carlitz, R. Scoville (1976)
Manuscripta mathematica
Similarity:
Jean-Marie De Koninck, Imre Kátai (2014)
Colloquium Mathematicae
Similarity:
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
Bruno Massé, Dominique Schneider (2014)
Acta Arithmetica
Similarity:
We show that the sequence of mantissas of the primorial numbers Pₙ, defined as the product of the first n prime numbers, is distributed following Benford's law. This is done by proving that the values of the first Chebyshev function at prime numbers are uniformly distributed modulo 1. We provide a convergence rate estimate. We also briefly treat some other sequences defined in the same way as Pₙ.
Hoi H. Nguyen, Endre Szemerédi, Van H. Vu (2008)
Acta Arithmetica
Similarity:
A. Ivic, Jean-Marie De Koninck (1979/80)
Manuscripta mathematica
Similarity:
Urs Würgler, Rolf Kultze (1986/87)
Manuscripta mathematica
Similarity:
Henri Faure (2005)
Acta Arithmetica
Similarity: