Displaying similar documents to “Riemannian foliations on Manifolds with non-negative curvature.”

Nontaut foliations and isoperimetric constants

Konrad Blachowski (2002)

Annales Polonici Mathematici

Similarity:

We study nontaut codimension one foliations on closed Riemannian manifolds. We find an estimate of some constant derived from the mean curvature function of the leaves of a foliation by some isoperimetric constant of the manifold. Moreover, for foliated 2-tori and the 3-dimensional unit sphere, we find the infimum of the former constants for all nontaut codimension one foliations.

De Lellis-Topping type inequalities for f-Laplacians

Guangyue Huang, Fanqi Zeng (2016)

Studia Mathematica

Similarity:

We establish an integral geometric inequality on a closed Riemannian manifold with ∞-Bakry-Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the ∞-Bakry-Émery Ricci curvature.

On the role of partial Ricci curvature in the geometry of submanifolds and foliations

Vladimir Rovenskiĭ (1998)

Annales Polonici Mathematici

Similarity:

Submanifolds and foliations with restrictions on q-Ricci curvature are studied. In §1 we estimate the distance between two compact submanifolds in a space of positive q-Ricci curvature, and give applications to special classes of submanifolds and foliations: k-saddle, totally geodesic, with nonpositive extrinsic q-Ricci curvature. In §2 we generalize a lemma by T. Otsuki on asymptotic vectors of a bilinear form and then estimate from below the radius of an immersed submanifold in a simply...