A Mixed Finite Element Method for Plasticity Problems with Hardening
C. Johnson (1976)
Publications mathématiques et informatique de Rennes
Similarity:
C. Johnson (1976)
Publications mathématiques et informatique de Rennes
Similarity:
A. Borobia (1994)
Discrete & computational geometry
Similarity:
Jacek Gancarzewicz (1976)
Annales Polonici Mathematici
Similarity:
Min Ho Lee (1991)
Manuscripta mathematica
Similarity:
D.N. Arnold, J., Jr. Douglas, ... (1984)
Numerische Mathematik
Similarity:
Rolf Stenberg (1988)
Numerische Mathematik
Similarity:
Ricardo Durán (1990/91)
Numerische Mathematik
Similarity:
Douglas N. Arnold, Richard S. Falk (1988)
Numerische Mathematik
Similarity:
Z. Stojek (1963)
Annales Polonici Mathematici
Similarity:
Angelo V. Caldarella, Anna Maria Pastore (2009)
Annales Polonici Mathematici
Similarity:
We deal with two classes of mixed metric 3-structures, namely the mixed 3-Sasakian structures and the mixed metric 3-contact structures. First, we study some properties of the curvature of mixed 3-Sasakian structures. Then we prove the identity between the class of mixed 3-Sasakian structures and the class of mixed metric 3-contact structures.
J.C. Nédélec (1986/87)
Numerische Mathematik
Similarity:
Březina, Jan
Similarity:
Richards' equation is a widely used model of partially saturated flow in a porous medium. In order to obtain conservative velocity field several authors proposed to use mixed or mixed-hybrid schemes to solve the equation. In this paper, we shall analyze the mixed scheme on 1D domain and we show that it violates the discrete maximum principle which leads to catastrophic oscillations in the solution.