A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity.

D.N. Arnold; J., Jr. Douglas; ...

Numerische Mathematik (1984)

  • Volume: 45, page 1-22
  • ISSN: 0029-599X; 0945-3245/e

How to cite

top

Arnold, D.N., Douglas, J., Jr., and .... "A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity.." Numerische Mathematik 45 (1984): 1-22. <http://eudml.org/doc/132950>.

@article{Arnold1984,
author = {Arnold, D.N., Douglas, J., Jr., ...},
journal = {Numerische Mathematik},
keywords = {new family of finite elements; mixed variational formulation; linear elasticity; displacements; stresses; Approximation properties; estimates of optimal order; incompressible case; analogue of Raviart-Thomas mixed finite elements},
pages = {1-22},
title = {A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity.},
url = {http://eudml.org/doc/132950},
volume = {45},
year = {1984},
}

TY - JOUR
AU - Arnold, D.N.
AU - Douglas, J., Jr.
AU - ...
TI - A Family of Higher Order Mixed Finite Element Methods for Plane Elasticity.
JO - Numerische Mathematik
PY - 1984
VL - 45
SP - 1
EP - 22
KW - new family of finite elements; mixed variational formulation; linear elasticity; displacements; stresses; Approximation properties; estimates of optimal order; incompressible case; analogue of Raviart-Thomas mixed finite elements
UR - http://eudml.org/doc/132950
ER -

Citations in EuDML Documents

top
  1. Gabriel N. Gatica, Analysis of a new augmented mixed finite element method for linear elasticity allowing ℝ𝕋 0 - 1 - 0 approximations
  2. J. Baranger, D. Sandri, A formulation of Stokes's problem and the linear elasticity equations suggested by the Oldroyd model for viscoelastic flow
  3. Jason S. Howell, Noel J. Walkington, Dual-mixed finite element methods for the Navier-Stokes equations
  4. Tunc Geveci, On the application of mixed finite element methods to the wave equations

NotesEmbed ?

top

You must be logged in to post comments.