On the discrepancy of inversive congruential pseudorandom numbers with prime power modulus.
Jürgen Eichenauer-Herrmann (1991)
Manuscripta mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Jürgen Eichenauer-Herrmann (1991)
Manuscripta mathematica
Similarity:
Richard H. Hudson (1983)
Manuscripta mathematica
Similarity:
Richard Hudson (1973)
Acta Arithmetica
Similarity:
K.-K. Choi, M.-C. Liu, K.-M. Tsang (1992)
Manuscripta mathematica
Similarity:
Hoi H. Nguyen, Endre Szemerédi, Van H. Vu (2008)
Acta Arithmetica
Similarity:
P. Gallagher (1974)
Acta Arithmetica
Similarity:
Paul Erdös, Aleksandar Ivić (1982)
Publications de l'Institut Mathématique
Similarity:
Jean-Marie De Koninck, Imre Kátai (2014)
Colloquium Mathematicae
Similarity:
Let pₘ(n) stand for the middle prime factor of the integer n ≥ 2. We first establish that the size of log pₘ(n) is close to √(log n) for almost all n. We then show how one can use the successive values of pₘ(n) to generate a normal number in any given base D ≥ 2. Finally, we study the behavior of exponential sums involving the middle prime factor function.
Jean-Marie De Koninck, Imre Kátai (2011)
Acta Arithmetica
Similarity:
J.F. Voloch, Arnaldo Garcia (1987)
Manuscripta mathematica
Similarity:
Artūras Dubickas, Andrius Stankevičius (2007)
Acta Arithmetica
Similarity:
Pieter Moree (1997)
Manuscripta mathematica
Similarity:
K. Ramachandra (1971)
Acta Arithmetica
Similarity:
Florian Luca, Francesco Pappalardi (2007)
Acta Arithmetica
Similarity:
Jiahai Kan (2004)
Acta Arithmetica
Similarity: