Displaying similar documents to “Shape optimization of an elasto-plastic body for the model with strain- hardening”

Control in obstacle-pseudoplate problems with friction on the boundary. approximate optimal design and worst scenario problems

Ivan Hlaváček, Ján Lovíšek (2002)

Applicationes Mathematicae

Similarity:

In addition to the optimal design and worst scenario problems formulated in a previous paper [3], approximate optimization problems are introduced, making use of the finite element method. The solvability of the approximate problems is proved on the basis of a general theorem of [3]. When the mesh size tends to zero, a subsequence of any sequence of approximate solutions converges uniformly to a solution of the continuous problem.

Shape optimization of elasto-plastic axisymmetric bodies

Ivan Hlaváček (1991)

Applications of Mathematics

Similarity:

A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.