Shape optimization of elasto-plastic axisymmetric bodies
Applications of Mathematics (1991)
- Volume: 36, Issue: 6, page 469-491
- ISSN: 0862-7940
Access Full Article
topAbstract
topHow to cite
topHlaváček, Ivan. "Shape optimization of elasto-plastic axisymmetric bodies." Applications of Mathematics 36.6 (1991): 469-491. <http://eudml.org/doc/15694>.
@article{Hlaváček1991,
abstract = {A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.},
author = {Hlaváček, Ivan},
journal = {Applications of Mathematics},
keywords = {domain optimization; control of variational inequalities; Hencky's law of elasto-plasticity; domain optimization; Hencky's law; Haar-Kármán’s principle; variational inequality; approximate optimal design problem; piecewise linear approximation; existence; uniqueness},
language = {eng},
number = {6},
pages = {469-491},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Shape optimization of elasto-plastic axisymmetric bodies},
url = {http://eudml.org/doc/15694},
volume = {36},
year = {1991},
}
TY - JOUR
AU - Hlaváček, Ivan
TI - Shape optimization of elasto-plastic axisymmetric bodies
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 6
SP - 469
EP - 491
AB - A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
LA - eng
KW - domain optimization; control of variational inequalities; Hencky's law of elasto-plasticity; domain optimization; Hencky's law; Haar-Kármán’s principle; variational inequality; approximate optimal design problem; piecewise linear approximation; existence; uniqueness
UR - http://eudml.org/doc/15694
ER -
References
top- G. Duvaut J. L. Lions, Les inéquations en mécanique et en physique, Paris, Dunod 1972. (1972) MR0464857
- R. Falk B. Mercier, Error estimates for elasto-plastic problems, R.A.I.R.O. Anal. Numér. 11 (1977), 135-144. (1977) MR0449119
- I. Hlaváček, Shape optimization of elasto-plastic bodies obeying Hencky's law, Apl. Mat. 31 (1986), 486-499. (1986) Zbl0616.73081MR0870484
- I. Hlaváček, Domain optimization of axisymmetric elliptic boundary value problems by finite elements, Apl. Mat. 33 (1988), 213-244. (1988) MR0944785
- I. Hlaváček, Shape optimization of elastic axisymmetric bodies, Apl. Mat. 34 (1989), 225- -245. (1989) MR0996898
- I. Hlaváček M. Křížek, Dual finite element analysis of 3D-axisymmetric elliptic problems, Numer. Anal. Part. Diff. Eqs. (To appear.)
- I. Hlaváček R. Mäkinen, On the numerical solution of axisymmetric domain optimization problems, Appl. Math. 36 (1991), 284-304. (1991) MR1113952
- B. Mercier G. Raugel, Resolution d’un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en , R.A.I.R.O. Anal. numér. 16 (1982), 405-461. (1982) MR0684832
- O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1983. (1983) MR0725856
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.