Shape optimization of elasto-plastic axisymmetric bodies

Ivan Hlaváček

Applications of Mathematics (1991)

  • Volume: 36, Issue: 6, page 469-491
  • ISSN: 0862-7940

Abstract

top
A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.

How to cite

top

Hlaváček, Ivan. "Shape optimization of elasto-plastic axisymmetric bodies." Applications of Mathematics 36.6 (1991): 469-491. <http://eudml.org/doc/15694>.

@article{Hlaváček1991,
abstract = {A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.},
author = {Hlaváček, Ivan},
journal = {Applications of Mathematics},
keywords = {domain optimization; control of variational inequalities; Hencky's law of elasto-plasticity; domain optimization; Hencky's law; Haar-Kármán’s principle; variational inequality; approximate optimal design problem; piecewise linear approximation; existence; uniqueness},
language = {eng},
number = {6},
pages = {469-491},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Shape optimization of elasto-plastic axisymmetric bodies},
url = {http://eudml.org/doc/15694},
volume = {36},
year = {1991},
}

TY - JOUR
AU - Hlaváček, Ivan
TI - Shape optimization of elasto-plastic axisymmetric bodies
JO - Applications of Mathematics
PY - 1991
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 36
IS - 6
SP - 469
EP - 491
AB - A minimization of a cost functional with respect to a part of a boundary is considered for an elasto-plastic axisymmetric body obeying Hencky's law. The principle of Haar-Kármán and piecewise linear stress approximations are used to solve the state problem. A convergence result and the existence of an optimal boundary is proved.
LA - eng
KW - domain optimization; control of variational inequalities; Hencky's law of elasto-plasticity; domain optimization; Hencky's law; Haar-Kármán’s principle; variational inequality; approximate optimal design problem; piecewise linear approximation; existence; uniqueness
UR - http://eudml.org/doc/15694
ER -

References

top
  1. G. Duvaut J. L. Lions, Les inéquations en mécanique et en physique, Paris, Dunod 1972. (1972) MR0464857
  2. R. Falk B. Mercier, Error estimates for elasto-plastic problems, R.A.I.R.O. Anal. Numér. 11 (1977), 135-144. (1977) MR0449119
  3. I. Hlaváček, Shape optimization of elasto-plastic bodies obeying Hencky's law, Apl. Mat. 31 (1986), 486-499. (1986) Zbl0616.73081MR0870484
  4. I. Hlaváček, Domain optimization of axisymmetric elliptic boundary value problems by finite elements, Apl. Mat. 33 (1988), 213-244. (1988) MR0944785
  5. I. Hlaváček, Shape optimization of elastic axisymmetric bodies, Apl. Mat. 34 (1989), 225- -245. (1989) MR0996898
  6. I. Hlaváček M. Křížek, Dual finite element analysis of 3D-axisymmetric elliptic problems, Numer. Anal. Part. Diff. Eqs. (To appear.) 
  7. I. Hlaváček R. Mäkinen, On the numerical solution of axisymmetric domain optimization problems, Appl. Math. 36 (1991), 284-304. (1991) MR1113952
  8. B. Mercier G. Raugel, Resolution d’un problème aux limites dans un ouvert axisymétrique par élément finis en r, z et séries de Fourier en θ , R.A.I.R.O. Anal. numér. 16 (1982), 405-461. (1982) MR0684832
  9. O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1983. (1983) MR0725856

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.