Displaying similar documents to “On approximation of the Neumann problem by the penalty method”

Two constant sign solutions for a nonhomogeneous Neumann boundary value problem

Liliana Klimczak (2015)

Annales Universitatis Paedagogicae Cracoviensis. Studia Mathematica

Similarity:

We consider a nonlinear Neumann problem with a nonhomogeneous elliptic differential operator. With some natural conditions for its structure and some general assumptions on the growth of the reaction term we prove that the problem has two nontrivial solutions of constant sign. In the proof we use variational methods with truncation and minimization techniques.

An Elliptic Neumann Problem with Subcritical Nonlinearity

Jan Chabrowski, Kyril Tintarev (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We establish the existence of a solution to the Neumann problem in the half-space with a subcritical nonlinearity on the boundary. Solutions are obtained through the constrained minimization or minimax. The existence of solutions depends on the shape of a boundary coefficient.

On a superconvergent finite element scheme for elliptic systems. II. Boundary conditions of Newton's or Neumann's type

Ivan Hlaváček, Michal Křížek (1987)

Aplikace matematiky

Similarity:

A simple superconvergent scheme for the derivatives of finite element solution is presented, when linear triangular elements are employed to solve second order elliptic systems with boundary conditions of Newton’s or Neumann’s type. For bounded plane domains with smooth boundary the local O ( h 3 / 2 ) -superconvergence of the derivatives in the L 2 -norm is proved. The paper is a direct continuations of [2], where an analogous problem with Dirichlet’s boundary conditions is treated.

Lagrange multipliers for higher order elliptic operators

Carlos Zuppa (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, the Babuška’s theory of Lagrange multipliers is extended to higher order elliptic Dirichlet problems. The resulting variational formulation provides an efficient numerical squeme in meshless methods for the approximation of elliptic problems with essential boundary conditions.