On an unconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions
Banach Center Publications (1994)
- Volume: 29, Issue: 1, page 65-77
- ISSN: 0137-6934
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] I. Babuška Uncertainties in engineering design: mathematical theory and numerical experience, in: The Optimal Shape, J. Bennett and M. M. Botkin (eds.), Plenum Press, 1986; also in: Technical Note BN-1044, Univ. of Maryland, 1985, 1-35.
- [2] I. Hlaváček and J. Nečas, On inequalities of Korn's type, I, Boundary-value problems for elliptic systems of partial differential equations, II, Applications to linear elasticity, Arch. Rational Mech. Anal. 36 (1970), 305-311, 312-334. Zbl0193.39001
- [3] M. Křížek, Conforming equilibrium finite element methods for some elliptic plane problems, RAIRO Numer. Anal. 17 (1983), 35-65. Zbl0541.76003
- [4] M. Křížek and P. Neittaanmäki, Finite Element Approximation of Variational Problems and Applications, Longman, Harlow 1990.
- [5] M. Křížek, P. Neittaanmäki and M. Vondrák, A nontraditional approach for solving the Neumann problem by the finite element method, Mat. Apl. Comput. 11 (1992), 31-40. Zbl0771.65070
- [6] D. F. Luenberger, Hyperbolic pairs in the method of conjugate gradients, SIAM J. Appl. Math. 17 (1969), 1263-1267. Zbl0187.09704
- [7] J. Nečas, Les méthodes directes en théorie des équations elliptiques, Academia, Prague 1967.
- [8] J. Nečas and I. Hlaváček, Mathematical Theory of Elastic and Elasto-plastic Bodies: An Introduction, Elsevier, Amsterdam 1981.
- [9] J. Taufer, Lösung der Randwertprobleme für Systeme von linearen Differentialgleichungen, Academia, Prague 1973. Zbl0276.34009
- [10] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer, Berlin 1988. Zbl0662.35001
- [11] D. E. Ward, Exact penalties and sufficient conditions for optimality in nonsmooth optimization, J. Optim. Theory Appl. 57 (1988), 485-499. Zbl0621.90081