Axial Isometries of Manifolds of Non-Positive Curvature.
Werner Ballmann (1982)
Mathematische Annalen
Similarity:
Werner Ballmann (1982)
Mathematische Annalen
Similarity:
Xianzhe Dai, Guofang Wei (1995)
Mathematische Annalen
Similarity:
Takao Yamaguchi (1989)
Mathematische Annalen
Similarity:
W.A. Poor (1975)
Mathematische Annalen
Similarity:
Calvaruso, Giovanni, García-Río, Eduardo (2010)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity:
Oldrich Kowalski (1973)
Mathematische Annalen
Similarity:
L. Vanhecke, T.J. Willmore (1983)
Mathematische Annalen
Similarity:
Katsumi Nomizu, Larry Graves (1978)
Mathematische Annalen
Similarity:
Katsuei Kenmotsu (1974)
Mathematische Annalen
Similarity:
Jerry L. Kazdan (1982)
Mathematische Annalen
Similarity:
Toshihiko, Ikawa (2000)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Paweł Grzegorz Walczak (1984)
Banach Center Publications
Similarity:
Davide Barilari, Luca Rizzi (2017)
Archivum Mathematicum
Similarity:
In sub-Riemannian geometry the coefficients of the Jacobi equation define curvature-like invariants. We show that these coefficients can be interpreted as the curvature of a canonical Ehresmann connection associated to the metric, first introduced in [15]. We show why this connection is naturally nonlinear, and we discuss some of its properties.