Comparison of the Bergman and the Kobayashi Metric.
Klas Diederich, John Eric Fornaess (1980)
Mathematische Annalen
Similarity:
Klas Diederich, John Eric Fornaess (1980)
Mathematische Annalen
Similarity:
Hans-Bert Rademacher (1994)
Mathematische Annalen
Similarity:
Steven R. Bell (1979)
Mathematische Annalen
Similarity:
Takeo Ohsawa, Klaus Diederich, Gregor Herbort (1985/86)
Mathematische Annalen
Similarity:
David W. Catlin (1988/89)
Mathematische Zeitschrift
Similarity:
L.D. Kay (1991)
Mathematische Annalen
Similarity:
So-Chin Chen (1987)
Mathematische Annalen
Similarity:
S.L. Krushkal (1991)
Mathematische Annalen
Similarity:
Steven R. Bell, Harold P. Boas (1981)
Mathematische Annalen
Similarity:
Bo-Yong Chen (1999)
Annales Polonici Mathematici
Similarity:
We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in are Bergman comlete.
Norberto Kerzman (1971)
Mathematische Annalen
Similarity:
Nikolai Nikolov, Peter Pflug (2003)
Annales Polonici Mathematici
Similarity:
Sharp geometrical lower and upper estimates are obtained for the Bergman kernel on the diagonal of a convex domain D ⊂ ℂⁿ which does not contain complex lines. It is also proved that the ratio of the Bergman and Carathéodory metrics of D does not exceed a constant depending only on n.
David E. Barrett (1981)
Mathematische Annalen
Similarity:
Wilhelm Klingenberg, Floris Takens (1972)
Mathematische Annalen
Similarity:
M. Jarnicki, P. Pflug (1989)
Annales Polonici Mathematici
Similarity: