Completeness of the Bergman metric on non-smooth pseudoconvex domains
Annales Polonici Mathematici (1999)
- Volume: 71, Issue: 3, page 241-251
- ISSN: 0066-2216
Access Full Article
topAbstract
topHow to cite
topBo-Yong Chen. "Completeness of the Bergman metric on non-smooth pseudoconvex domains." Annales Polonici Mathematici 71.3 (1999): 241-251. <http://eudml.org/doc/262778>.
@article{Bo1999,
abstract = {We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in $ℂ^n$ are Bergman comlete.},
author = {Bo-Yong Chen},
journal = {Annales Polonici Mathematici},
keywords = {Bergman metric; condition S; pseudoconvexity; hyperconvexity; Bergman completeness; pluricomplex Green function; -equation on complete Kähler manifolds; Kähler metric},
language = {eng},
number = {3},
pages = {241-251},
title = {Completeness of the Bergman metric on non-smooth pseudoconvex domains},
url = {http://eudml.org/doc/262778},
volume = {71},
year = {1999},
}
TY - JOUR
AU - Bo-Yong Chen
TI - Completeness of the Bergman metric on non-smooth pseudoconvex domains
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 241
EP - 251
AB - We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in $ℂ^n$ are Bergman comlete.
LA - eng
KW - Bergman metric; condition S; pseudoconvexity; hyperconvexity; Bergman completeness; pluricomplex Green function; -equation on complete Kähler manifolds; Kähler metric
UR - http://eudml.org/doc/262778
ER -
References
top- [1] E. Bedford and J. P. Demailly, Two counterexamples concerning the pluri-complex Green function in , Indiana Univ. Math. J. 37 (1988), 865-867. Zbl0681.32014
- [2] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Amer. Math. Soc., Providence, R.I., 1970. Zbl0208.34302
- [3] Z. Błocki, Smooth exhaustion functions in convex domains, Proc. Amer. Math. Soc. 125 (1997), 477-484. Zbl0889.35030
- [4] H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, in: Lectures on Functions of a Complex Variable, Univ. of Michigan Press, 1955, 349-383.
- [5] J. P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564. Zbl0595.32006
- [6] K. Diederich and T. Ohsawa, General continuity principles for the Bergman kernel, Internat. J. Math. 5 (1994), 189-199. Zbl0805.32013
- [7] H. Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38-75. Zbl0073.30203
- [8] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1990.
- [9] M. Jarnicki and P. Pflug, Bergman completeness of complete circular domains, Ann. Polon. Math. 50 (1989), 219-222. Zbl0701.32002
- [10] N. Kerzman et J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171-184. Zbl0451.32012
- [11] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267-290. Zbl0136.07102
- [12] T. Ohsawa, On the Bergman kernel of hyperconvex domains, Nagoya Math. J. 129 (1993), 43-52. Zbl0774.32016
- [13] T. Ohsawa, On the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 238-240. Zbl0508.32008
- [14] P. Pflug, Various applications of the existence of well growing holomorphic functions, in: Functional Analysis, Holomorphy and Approximation Theory, J. A. Barroso (ed.), North-Holland Math. Stud. 71, North-Holland, 1982, 391-412.
- [15] W. Zwonek, On symmetry of the pluricomplex Green function for ellipsoids, Ann. Polon. Math. 67 (1997), 121-129. Zbl0884.31006
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.