Completeness of the Bergman metric on non-smooth pseudoconvex domains

Bo-Yong Chen

Annales Polonici Mathematici (1999)

  • Volume: 71, Issue: 3, page 241-251
  • ISSN: 0066-2216

Abstract

top
We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in n are Bergman comlete.

How to cite

top

Bo-Yong Chen. "Completeness of the Bergman metric on non-smooth pseudoconvex domains." Annales Polonici Mathematici 71.3 (1999): 241-251. <http://eudml.org/doc/262778>.

@article{Bo1999,
abstract = {We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in $ℂ^n$ are Bergman comlete.},
author = {Bo-Yong Chen},
journal = {Annales Polonici Mathematici},
keywords = {Bergman metric; condition S; pseudoconvexity; hyperconvexity; Bergman completeness; pluricomplex Green function; -equation on complete Kähler manifolds; Kähler metric},
language = {eng},
number = {3},
pages = {241-251},
title = {Completeness of the Bergman metric on non-smooth pseudoconvex domains},
url = {http://eudml.org/doc/262778},
volume = {71},
year = {1999},
}

TY - JOUR
AU - Bo-Yong Chen
TI - Completeness of the Bergman metric on non-smooth pseudoconvex domains
JO - Annales Polonici Mathematici
PY - 1999
VL - 71
IS - 3
SP - 241
EP - 251
AB - We prove that the Bergman metric on domains satisfying condition S is complete. This implies that any bounded pseudoconvex domain with Lipschitz boundary is complete with respect to the Bergman metric. We also show that bounded hyperconvex domains in the plane and convex domains in $ℂ^n$ are Bergman comlete.
LA - eng
KW - Bergman metric; condition S; pseudoconvexity; hyperconvexity; Bergman completeness; pluricomplex Green function; -equation on complete Kähler manifolds; Kähler metric
UR - http://eudml.org/doc/262778
ER -

References

top
  1. [1] E. Bedford and J. P. Demailly, Two counterexamples concerning the pluri-complex Green function in n , Indiana Univ. Math. J. 37 (1988), 865-867. Zbl0681.32014
  2. [2] S. Bergman, The Kernel Function and Conformal Mapping, 2nd ed., Amer. Math. Soc., Providence, R.I., 1970. Zbl0208.34302
  3. [3] Z. Błocki, Smooth exhaustion functions in convex domains, Proc. Amer. Math. Soc. 125 (1997), 477-484. Zbl0889.35030
  4. [4] H. J. Bremermann, Holomorphic continuation of the kernel function and the Bergman metric in several complex variables, in: Lectures on Functions of a Complex Variable, Univ. of Michigan Press, 1955, 349-383. 
  5. [5] J. P. Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), 519-564. Zbl0595.32006
  6. [6] K. Diederich and T. Ohsawa, General continuity principles for the Bergman kernel, Internat. J. Math. 5 (1994), 189-199. Zbl0805.32013
  7. [7] H. Grauert, Charakterisierung der Holomorphiegebiete durch die vollständige Kählersche Metrik, Math. Ann. 131 (1956), 38-75. Zbl0073.30203
  8. [8] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North-Holland, 1990. 
  9. [9] M. Jarnicki and P. Pflug, Bergman completeness of complete circular domains, Ann. Polon. Math. 50 (1989), 219-222. Zbl0701.32002
  10. [10] N. Kerzman et J.-P. Rosay, Fonctions plurisousharmoniques d'exhaustion bornées et domaines taut, Math. Ann. 257 (1981), 171-184. Zbl0451.32012
  11. [11] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1959), 267-290. Zbl0136.07102
  12. [12] T. Ohsawa, On the Bergman kernel of hyperconvex domains, Nagoya Math. J. 129 (1993), 43-52. Zbl0774.32016
  13. [13] T. Ohsawa, On the completeness of the Bergman metric, Proc. Japan Acad. Ser. A Math. Sci. 57 (1981), 238-240. Zbl0508.32008
  14. [14] P. Pflug, Various applications of the existence of well growing holomorphic functions, in: Functional Analysis, Holomorphy and Approximation Theory, J. A. Barroso (ed.), North-Holland Math. Stud. 71, North-Holland, 1982, 391-412. 
  15. [15] W. Zwonek, On symmetry of the pluricomplex Green function for ellipsoids, Ann. Polon. Math. 67 (1997), 121-129. Zbl0884.31006

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.