Primes in arithmetic progressions to spaced moduli
Roger C. Baker (2012)
Acta Arithmetica
Similarity:
Roger C. Baker (2012)
Acta Arithmetica
Similarity:
Stephan Baier, Liangyi Zhao (2006)
Acta Arithmetica
Similarity:
Robert A. Smith (1982)
Mathematische Annalen
Similarity:
Deniz A. Kaptan (2016)
Acta Arithmetica
Similarity:
We implement the Maynard-Tao method of detecting primes in tuples to investigate small gaps between primes in arithmetic progressions, with bounds that are uniform over a range of moduli.
K.F. ROTH (1967)
Mathematische Annalen
Similarity:
K.F. ROTH (1967)
Mathematische Annalen
Similarity:
Binbin Zhou (2009)
Acta Arithmetica
Similarity:
Ralph D. Beetle (1915)
Mathematische Annalen
Similarity:
Goro Shimura (1975)
Mathematische Annalen
Similarity:
Bin Feng (2019)
Czechoslovak Mathematical Journal
Similarity:
We find, via the Selberg-Delange method, an asymptotic formula for the mean of arithmetic functions on certain APs. It generalizes a result due to Cui and Wu (2014).
Régis de la Bretèche, Kevin Ford, Joseph Vandehey (2013)
Acta Arithmetica
Similarity:
We improve known bounds for the maximum number of pairwise disjoint arithmetic progressions using distinct moduli less than x. We close the gap between upper and lower bounds even further under the assumption of a conjecture from combinatorics about Δ-systems (also known as sunflowers).
D. A. Goldston, C. Y. Yıldırım (2001)
Acta Arithmetica
Similarity:
Alexander Dinghas (1947/1949)
Mathematische Annalen
Similarity:
S.K. Stein (1957/58)
Mathematische Annalen
Similarity:
Yoichi Motohashi (1978)
Inventiones mathematicae
Similarity:
Étienne Fouvry, Igor E. Shparlinski (2011)
Acta Arithmetica
Similarity: