On Quasilinear Parabolic Systems.
Paolo Acquistapace, Brunello Terreni (1988)
Mathematische Annalen
Similarity:
Paolo Acquistapace, Brunello Terreni (1988)
Mathematische Annalen
Similarity:
Alessandra Lunardi (1984)
Mathematische Annalen
Similarity:
Hedi Ben Saad, Klaus Janßen (1985)
Mathematische Annalen
Similarity:
D.H. SATTINGER (1969)
Mathematische Annalen
Similarity:
Ling, Zhengqiu, Wang, Zhi-Gang (2007)
Lobachevskii Journal of Mathematics
Similarity:
V.A. Galaktionov, J.L. Vazquez (1995)
Mathematische Annalen
Similarity:
Cung The Anh, Phan Quoc Hung (2008)
Annales Polonici Mathematici
Similarity:
We study the global existence and long-time behavior of solutions for a class of semilinear degenerate parabolic equations in an arbitrary domain.
Horn, Werner (2002)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
R.M. Redheffer, W. Walter (1974)
Mathematische Annalen
Similarity:
Ray Redheffer, Wolfgang Walter (1980)
Mathematische Zeitschrift
Similarity:
El Hachimi, Abderrahmane, Sidi Ammi, Moulay Rchid (2005)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity:
Herbert Amann (1990)
Mathematische Zeitschrift
Similarity:
Cung The Anh, Nguyen Dinh Binh, Le Thi Thuy (2010)
Annales Polonici Mathematici
Similarity:
We prove the existence and upper semicontinuity with respect to the nonlinearity and the diffusion coefficient of global attractors for a class of semilinear degenerate parabolic equations in an arbitrary domain.
Piotr Biler, Lorenzo Brandolese (2009)
Studia Mathematica
Similarity:
We establish new results on convergence, in strong topologies, of solutions of the parabolic-parabolic Keller-Segel system in the plane to the corresponding solutions of the parabolic-elliptic model, as a physical parameter goes to zero. Our main tools are suitable space-time estimates, implying the global existence of slowly decaying (in general, nonintegrable) solutions for these models, under a natural smallness assumption.
H. Ugowski (1971)
Annales Polonici Mathematici
Similarity:
Sachiko Ishida, Tomomi Yokota (2023)
Archivum Mathematicum
Similarity:
This paper presents a stabilization result for weak solutions of degenerate parabolic equations in divergence form. More precisely, the result asserts that the global-in-time weak solution converges to the average of the initial data in some topology as time goes to infinity. It is also shown that the result can be applied to a degenerate parabolic-elliptic Keller-Segel system.