The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Fractals, trees and the Neumann Laplacian.”

The principal eigenvalue of the ∞-laplacian with the Neumann boundary condition

Stefania Patrizi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.

The principal eigenvalue of the ∞-Laplacian with the Neumann boundary condition

Stefania Patrizi (2011)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We prove the existence of a principal eigenvalue associated to the ∞-Laplacian plus lower order terms and the Neumann boundary condition in a bounded smooth domain. As an application we get uniqueness and existence results for the Neumann problem and a decay estimate for viscosity solutions of the Neumann evolution problem.

On the Neumann problem with combined nonlinearities

Jan Chabrowski, Jianfu Yang (2005)

Annales Polonici Mathematici

Similarity:

We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.