Displaying similar documents to “On steady compressible Navier-Stokes equations in plane domains with corners.”

The Stokes system in the incompressible case-revisited

Rainer Picard (2008)

Banach Center Publications

Similarity:

The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.

On the Qualitative Behavior of the Solutions to the 2-D Navier-Stokes Equation

M. Pulvirenti (2008)

Bollettino dell'Unione Matematica Italiana

Similarity:

This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.

Global attractor for Navier-Stokes equations in cylindrical domains

Bernard Nowakowski, Wojciech M. Zajączkowski (2009)

Applicationes Mathematicae

Similarity:

Global and regular solutions of the Navier-Stokes system in cylindrical domains have already been obtained under the assumption of smallness of (1) the derivative of the velocity field with respect to the variable along the axis of cylinder, (2) the derivative of force field with respect to the variable along the axis of the cylinder and (3) the projection of the force field on the axis of the cylinder restricted to the part of the boundary perpendicular to the axis of the cylinder....

Linear flow problems in 2D exterior domains for 2D incompressible fluid flows

Paweł Konieczny (2008)

Banach Center Publications

Similarity:

The paper analyzes the issue of existence of solutions to linear problems in two dimensional exterior domains, linearizations of the Navier-Stokes equations. The systems are studied with a slip boundary condition. The main results prove the existence of distributional solutions for arbitrary data.