The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On stability of C... mappings of manifolds with boundary.”

C¹ stability of endomorphisms on two-dimensional manifolds

J. Iglesias, A. Portela, A. Rovella (2012)

Fundamenta Mathematicae

Similarity:

A set of necessary conditions for C¹ stability of noninvertible maps is presented. It is proved that the conditions are sufficient for C¹ stability in compact oriented manifolds of dimension two. An example given by F. Przytycki in 1977 is shown to satisfy these conditions. It is the first example known of a C¹ stable map (noninvertible and nonexpanding) in a manifold of dimension two, while a wide class of examples are already known in every other dimension.

Stability of certain Engel-like distributions

Aritra Bhowmick (2021)

Czechoslovak Mathematical Journal

Similarity:

We introduce a higher dimensional analogue of the Engel structure, motivated by the Cartan prolongation of contact manifolds. We study the stability of such structure, generalizing the Gray-type stability results for Engel manifolds. We also derive local normal forms defining such a distribution.

On stability of 3-manifolds

Sławomir Kwasik, Witold Rosicki (2004)

Fundamenta Mathematicae

Similarity:

We address the following question: How different can closed, oriented 3-manifolds be if they become homeomorphic after taking a product with a sphere? For geometric 3-manifolds this paper provides a complete answer to this question. For possibly non-geometric 3-manifolds, we establish results which concern 3-manifolds with finite fundamental group (i.e., 3-dimensional fake spherical space forms) and compare these results with results involving fake spherical space...