On compact metric spaces and the group of Baire equivalences
E. Lorch (1968)
Studia Mathematica
Similarity:
E. Lorch (1968)
Studia Mathematica
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
Jerzy Kąkol (1986)
Mathematica Slovaca
Similarity:
R. C. Haworth, R. A McCoy
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................
Jerzy Kakol (2000)
Revista Matemática Complutense
Similarity:
We characterize Baire-like spaces C(X,E) of continuous functions defined on a locally compact and Hewitt space X into a locally convex space E endowed with the compact-open topology.
Kazimierz Kuratowski (1979)
Colloquium Mathematicum
Similarity:
Zbigniew Grande (2009)
Colloquium Mathematicae
Similarity:
Let I ⊂ ℝ be an open interval and let A ⊂ I be any set. Every Baire 1 function f: I → ℝ coincides on A with a function g: I → ℝ which is simultaneously approximately continuous and quasicontinuous if and only if the set A is nowhere dense and of Lebesgue measure zero.
Bożena Świątek (2004)
Colloquium Mathematicae
Similarity:
We investigate the topological structure of the space 𝓓ℬ₁ of bounded Darboux Baire 1 functions on [0,1] with the metric of uniform convergence and with the p*-topology. We also investigate some properties of the set Δ of bounded derivatives.
Jerzy Kakol, Walter Roelcke (1992)
Collectanea Mathematica
Similarity:
The aim of the present paper is to study the class of tvs which we define by ommiting the word increasing in the definition of *-suprabarrelled spaces. We prove that the product of Baire tvs is *-UBL and hence the class of *-UBL spaces is stricty larger than the class of Baire spaces.