The real rank of inductive limit C*-algebras.
B. Blackadar, M. Dadarlat, M. Rordam (1991)
Mathematica Scandinavica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
B. Blackadar, M. Dadarlat, M. Rordam (1991)
Mathematica Scandinavica
Similarity:
Mikael Rordam, Ian F. Putnam (1988)
Mathematica Scandinavica
Similarity:
Bruce Blackadar, Ola Bratteli (1992)
Mathematische Annalen
Similarity:
Kenneth R. Goodearl (1992)
Publicacions Matemàtiques
Similarity:
A construction method is presented for a class of simple C*-algebras whose basic properties -including their real ranks- can be computed relatively easily, using linear algebra. A numerival invariant attached to the construction determines wether a given algebra has real rank 0 or 1. Moreover, these algebras all have stable rank 1, and each nonzero hereditary sub-C*-algebra contains a nonzero projection, yet there are examples in which the linear span of the projections is not dense....
Marius Dadarlat, Terry A. Loring (1994)
Annales de l'institut Fourier
Similarity:
G. Elliott extended the classification theory of -algebras to certain real rank zero inductive limits of subhomogeneous -algebras with one dimensional spectrum. We show that this class of -algebras is not closed under extensions. The relevant obstruction is related to the torsion subgroup of the -group. Perturbation and lifting results are provided for certain subhomogeneous -algebras.
Marius Dadarlat (1995)
Journal für die reine und angewandte Mathematik
Similarity:
Jeremy Lovejoy, Robert Osburn (2010)
Acta Arithmetica
Similarity:
Ciatti, Paolo (2000)
Journal of Lie Theory
Similarity:
N. Christopher Phillips (1991)
Mathematica Scandinavica
Similarity:
Guihua Gong (1997)
Mathematica Scandinavica
Similarity:
Guihua Gong (1997)
Mathematica Scandinavica
Similarity:
George A. Elliott (1993)
Journal für die reine und angewandte Mathematik
Similarity: