Extensions of certain real rank zero C * -algebras

Marius Dadarlat; Terry A. Loring

Annales de l'institut Fourier (1994)

  • Volume: 44, Issue: 3, page 907-925
  • ISSN: 0373-0956

Abstract

top
G. Elliott extended the classification theory of A F -algebras to certain real rank zero inductive limits of subhomogeneous C * -algebras with one dimensional spectrum. We show that this class of C * -algebras is not closed under extensions. The relevant obstruction is related to the torsion subgroup of the K 1 -group. Perturbation and lifting results are provided for certain subhomogeneous C * -algebras.

How to cite

top

Dadarlat, Marius, and Loring, Terry A.. "Extensions of certain real rank zero $C^*$-algebras." Annales de l'institut Fourier 44.3 (1994): 907-925. <http://eudml.org/doc/75084>.

@article{Dadarlat1994,
abstract = {G. Elliott extended the classification theory of $AF$-algebras to certain real rank zero inductive limits of subhomogeneous $C^*$-algebras with one dimensional spectrum. We show that this class of $C^*$-algebras is not closed under extensions. The relevant obstruction is related to the torsion subgroup of the $K_1$-group. Perturbation and lifting results are provided for certain subhomogeneous $C^*$-algebras.},
author = {Dadarlat, Marius, Loring, Terry A.},
journal = {Annales de l'institut Fourier},
keywords = {classification theory of AF-algebras; real rank zero inductive limits of subhomogeneous -algebras with one-dimensional spectrum; - group; perturbation; lifting; subhomogeneous -algebras},
language = {eng},
number = {3},
pages = {907-925},
publisher = {Association des Annales de l'Institut Fourier},
title = {Extensions of certain real rank zero $C^*$-algebras},
url = {http://eudml.org/doc/75084},
volume = {44},
year = {1994},
}

TY - JOUR
AU - Dadarlat, Marius
AU - Loring, Terry A.
TI - Extensions of certain real rank zero $C^*$-algebras
JO - Annales de l'institut Fourier
PY - 1994
PB - Association des Annales de l'Institut Fourier
VL - 44
IS - 3
SP - 907
EP - 925
AB - G. Elliott extended the classification theory of $AF$-algebras to certain real rank zero inductive limits of subhomogeneous $C^*$-algebras with one dimensional spectrum. We show that this class of $C^*$-algebras is not closed under extensions. The relevant obstruction is related to the torsion subgroup of the $K_1$-group. Perturbation and lifting results are provided for certain subhomogeneous $C^*$-algebras.
LA - eng
KW - classification theory of AF-algebras; real rank zero inductive limits of subhomogeneous -algebras with one-dimensional spectrum; - group; perturbation; lifting; subhomogeneous -algebras
UR - http://eudml.org/doc/75084
ER -

References

top
  1. [Bl] B. BLACKADAR, K-theory for Operator Algebras, M.S.R.I. Monographs No. 5, Springer-Verlag, Berlin and New York (1986). Zbl0597.46072MR88g:46082
  2. [Br1] L. G. BROWN, Extensions of AF algebras : The projection lifting problem, Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982. Zbl0519.46060
  3. [Br2] L. G. BROWN, The Universal coefficient theorem for Ext and quasidiagonality, Operator Algebras and Group Representations, vol. 17, Pitman Press, Boston, London and Melbourne, (1983), 60-64. Zbl0548.46055MR85m:46066
  4. [BP] L. G. BROWN and G. K. PEDERSEN, C*-algebras of real rank zero, J. Funct. Anal., vol. 99 (1991), 131-149. Zbl0776.46026MR92m:46086
  5. [BD] L. G. BROWN and M. DADARLAT, Extensions of C*-algebras and quasidiagonality, preprint (1993). Zbl0857.46045
  6. [CH] A. CONNES and N. HIGSON, Déformations, morphismes asymptotiques et K-théorie bivariante, C.R. Acad. Sci. Paris, vol. 313 (1990), 101-106. Zbl0717.46062MR91m:46114
  7. [DL1] M. DADARLAT and T. A. LORING, The K-theory of abelian subalgebras of AF algebras, J. reine angew. Math., 432 (1992), 39-55. Zbl0751.46043MR94b:46099
  8. [DL2] M. DADARLAT and T. A. LORING, K-homology, asymptotic representations and unsuspended E-theory, to appear in J. Funct. Anal. Zbl0863.46045
  9. [DL3] M. DADARLAT and T. A. LORING, Deformations of topological spaces predicted by E-theory, to appear in Proceedings of GPOTS, Iowa, (1993). Zbl0818.46074
  10. [Eff] E. G. EFFROS, Dimensions and C*-algebras, CBMS Regional Conf. Series in Math., vol. 46, Amer. Math. Soc., Providence R. I., (1981). Zbl0475.46050
  11. [Ell] G. ELLIOTT, On the classification of C*-algebras of real rank zero I, to appear. Zbl0867.46041
  12. [EK] D. EVANS and A. KISHIMOTO, Compact group actions on UHF-algebras obtained by folding the interval, J. Funct. Anal., vol. 98 (1991), 346-348. Zbl0746.46055MR92h:46093
  13. [K] G. G. KASPAROV, The operator K-functor and extensions of C*-algebras, Math. URSS Izv., vol. 16 (1981), 513-572. Zbl0464.46054
  14. [Li1] H. LIN, Approximation by normal elements with finite spectrum in C*-algebras of real rank zero, Preprint, (1992). 
  15. [Li2] H. LIN, Exponential rank of C*-algebras with real rank zero and the Brown-Pedersen conjecture, Preprint, (1991). 
  16. [LR] H. LIN and M. RØRDAM, Extensions of inductive limits of circle algebras, Preprint Odense Universitet, (1992). Zbl0827.46054
  17. [Lo1] T. A. LORING, C*-algebras generated by stable relations, J. Funct. Anal., 112 (1993), 159-201. Zbl0778.46036MR94k:46115
  18. [Lo2] T. A. LORING, Projective C*-algebras, Math. Scand., (1992) to appear. Zbl0811.46060
  19. [Lo3] T. A. LORING, Stable relations II : corona semiprojectivity and dimension-drop C*-algebras, preprint, 1993. 
  20. [R] M. A. RIEFFEL, Dimension and stable rank in the K-theory of C*-algebras, Proc. London Math. Soc., 46 (1983), 301-333. Zbl0533.46046MR84g:46085
  21. [RS] J. ROSENBERG and C. SCHOCHET, The Künneth theorem and the universal coefficient theorem for Kasparov's generalized functor, Duke Math. J., 55 (1987), 431-474. Zbl0644.46051MR88i:46091
  22. [Sa] N. SALINAS, Relative quasidiagonality and KK-theory, Houston J. of Math., 18-1 (1992), 97-116. Zbl0772.46039MR94c:19005
  23. [Z] S. ZHANG, K1-groups, quasidiagonality and interpolation by multiplier projections, Trans. Amer. Math. Soc., 325 (1991), 793-818. Zbl0673.46050

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.