Representations of countable commutative semigroups by products of weakly homogeneous spaces
Jiří Vinárek (1980)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Jiří Vinárek (1980)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
H. Länger (1980)
Colloquium Mathematicae
Similarity:
B. Gilligan (1986)
Matematički Vesnik
Similarity:
Gadea, P.M., Ramos, Ana Primo (2003)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Arhangel’skii, Alexander, Choban, Mitrofan, Mihaylova, Ekaterina (2012)
Union of Bulgarian Mathematicians
Similarity:
Александър В. Архангелски, Митрофан М. Чобан, Екатерина П. Михайлова - Въведени са понятията o-хомогенно пространство, lo-хомогенно пространство, do-хомогенно пространство и co-хомогенно пространство. Показано е, че ако lo-хомогенно пространство X има отворено подпространство, което е q-пълно, то и самото X е q-пълно. Показано е, че ако lo-хомогенно пространство X съдържа навсякъде гъсто екстремално несвързано подпространство, тогава X е екстремално несвързано. In this paper...
J. van Mill, G. J. Ridderbos (2005)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We study retracts of coset spaces. We prove that in certain spaces the set of points that are contained in a component of dimension less than or equal to n, is a closed set. Using our techniques we are able to provide new examples of homogeneous spaces that are not coset spaces. We provide an example of a compact homogeneous space which is not a coset space. We further provide an example of a compact metrizable space which is a retract of a homogeneous compact space, but which is not...
Lasserre, Jean B. (1998)
Journal of Convex Analysis
Similarity:
Jan van Mill (2011)
Fundamenta Mathematicae
Similarity:
We prove that if a space X is countable dense homogeneous and no set of size n-1 separates it, then X is strongly n-homogeneous. Our main result is the construction of an example of a Polish space X that is strongly n-homogeneous for every n, but not countable dense homogeneous.
J. Wierzejewski (1977)
Fundamenta Mathematicae
Similarity: