Riemannian manifolds whose Laplacians have purely continuous spectrum.
Harold Donnelly, Nicola Garafalo (1992)
Mathematische Annalen
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Harold Donnelly, Nicola Garafalo (1992)
Mathematische Annalen
Similarity:
Regina Kleine (1988)
Mathematische Zeitschrift
Similarity:
Katsumi Nomizu, Kentaro Yano (1967)
Mathematische Zeitschrift
Similarity:
M. Glasner, R. Katz, M. Nakai (1971)
Mathematische Zeitschrift
Similarity:
Oldrich Kowalski (1974)
Mathematische Zeitschrift
Similarity:
Xiao-Wie Peng (1989)
Mathematische Zeitschrift
Similarity:
Georgi S. Popov (1993)
Mathematische Zeitschrift
Similarity:
Gudlaugur Thorbergsson (1978)
Mathematische Zeitschrift
Similarity:
Grigorios Tsagas (1978/79)
Mathematische Zeitschrift
Similarity:
Robert Brooks (1984)
Mathematische Zeitschrift
Similarity:
Carolyn S. Gordon, Juan Pablo Rossetti (2003)
Annales de l'Institut Fourier
Similarity:
Let be a -dimensional compact Riemannian manifold. We show that the spectrum of the Hodge Laplacian acting on -forms does not determine whether the manifold has boundary, nor does it determine the lengths of the closed geodesics. Among the many examples are a projective space and a hemisphere that have the same Hodge spectrum on 1- forms, and hyperbolic surfaces, mutually isospectral on 1-forms, with different injectivity radii. The Hodge -spectrum also does not distinguish orbifolds...
Norio Ejiri (1979)
Mathematische Zeitschrift
Similarity: