The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Number of Faces of Simplicial Complexes and the Purity of Frobenius.”

Moment-angle complexes from simplicial posets

Zhi Lü, Taras Panov (2011)

Open Mathematics

Similarity:

We extend the construction of moment-angle complexes to simplicial posets by associating a certain T m-space Z S to an arbitrary simplicial poset S on m vertices. Face rings ℤ[S] of simplicial posets generalise those of simplicial complexes, and give rise to new classes of Gorenstein and Cohen-Macaulay rings. Our primary motivation is to study the face rings ℤ[S] by topological methods. The space Z S has many important topological properties of the original moment-angle complex Z K associated...

Sperner's Lemma

Karol Pąk (2010)

Formalized Mathematics

Similarity:

In this article we introduce and prove properties of simplicial complexes in real linear spaces which are necessary to formulate Sperner's lemma. The lemma states that for a function ƒ, which for an arbitrary vertex υ of the barycentric subdivision B of simplex K assigns some vertex from a face of K which contains υ, we can find a simplex S of B which satisfies ƒ(S) = K (see [10]).

Brouwer Fixed Point Theorem for Simplexes

Karol Pąk (2011)

Formalized Mathematics

Similarity:

In this article we prove the Brouwer fixed point theorem for an arbitrary simplex which is the convex hull of its n + 1 affinely indepedent vertices of εn. First we introduce the Lebesgue number, which for an arbitrary open cover of a compact metric space M is a positive real number so that any ball of about such radius must be completely contained in a member of the cover. Then we introduce the notion of a bounded simplicial complex and the diameter of a bounded simplicial complex....