Positive Operators and Elliptic Eigenvalue Problems.
Roger D. Nussbaum (1984)
Mathematische Zeitschrift
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Roger D. Nussbaum (1984)
Mathematische Zeitschrift
Similarity:
Peter Hess (1985)
Mathematische Annalen
Similarity:
W. Allegretto (1987)
Mathematische Zeitschrift
Similarity:
C.V. Coffman, M.M. Marcus, V.J. Mizel (1983)
Mathematische Zeitschrift
Similarity:
Jan Bochenek (1989)
Annales Polonici Mathematici
Similarity:
Neil S. Trudinger (1980)
Mathematische Zeitschrift
Similarity:
Gossez, Jean-Pierre, Lami Dozo, Enrique (1982)
Portugaliae mathematica
Similarity:
Ibrahim, S. F. M. (2002)
Southwest Journal of Pure and Applied Mathematics [electronic only]
Similarity:
Albert Schneider (1974)
Mathematische Zeitschrift
Similarity:
J. Fleckinger, J. Hernández, F. Thélin (2004)
Bollettino dell'Unione Matematica Italiana
Similarity:
We study the existence of principal eigenvalues for differential operators of second order which are not necessarily in divergence form. We obtain results concerning multiplicity of principal eigenvalues in both the variational and the general case. Our approach uses systematically the Krein-Rutman theorem and fixed point arguments for the spectral radius of some associated problems. We also use a variational characterization for both the self-adjoint and the general case.
Jan Bochenek (1965)
Annales Polonici Mathematici
Similarity:
Fabricant, Alexander, Kutev, Nikolai, Rangelov, Tsviatko (2007)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 35J70, 35P15. The asymptotic of the first eigenvalue for linear second order elliptic equations in divergence form with large drift is studied. A necessary and a sufficient condition for the maximum possible rate of the first eigenvalue is proved.