Riemannian manifolds whose Laplacians have purely continuous spectrum.
Harold Donnelly, Nicola Garafalo (1992)
Mathematische Annalen
Similarity:
Harold Donnelly, Nicola Garafalo (1992)
Mathematische Annalen
Similarity:
Domenico Perrone (1984)
Mathematische Zeitschrift
Similarity:
Robert Brooks (1981)
Mathematische Zeitschrift
Similarity:
Johann Walter (1972)
Mathematische Zeitschrift
Similarity:
Jaroslav Zemánek (2007)
Banach Center Publications
Similarity:
Georgi S. Popov (1993)
Mathematische Zeitschrift
Similarity:
Edward B. Burger, Amanda Folsom, Alexander Pekker, Rungporn Roengpitya, Julia Snyder (2002)
Acta Arithmetica
Similarity:
H. J. Borchers (1986)
Recherche Coopérative sur Programme n°25
Similarity:
GH. Mocanu (1974)
Studia Mathematica
Similarity:
Regina Kleine (1988)
Mathematische Zeitschrift
Similarity:
Carolyn S. Gordon, Juan Pablo Rossetti (2003)
Annales de l'Institut Fourier
Similarity:
Let be a -dimensional compact Riemannian manifold. We show that the spectrum of the Hodge Laplacian acting on -forms does not determine whether the manifold has boundary, nor does it determine the lengths of the closed geodesics. Among the many examples are a projective space and a hemisphere that have the same Hodge spectrum on 1- forms, and hyperbolic surfaces, mutually isospectral on 1-forms, with different injectivity radii. The Hodge -spectrum also does not distinguish orbifolds...