Nontrivial solutions for a Neumann problem with a nonlinear term asymptotically linear at - ... and superlinear at + ... .
David Arcoya, Salvador Villegas (1995)
Mathematische Zeitschrift
Similarity:
David Arcoya, Salvador Villegas (1995)
Mathematische Zeitschrift
Similarity:
John Cossey (1968)
Mathematische Zeitschrift
Similarity:
W.R. Scott (1956/57)
Mathematische Zeitschrift
Similarity:
Antonella Fiacca, Raffaella Servadei (2001)
Discussiones Mathematicae, Differential Inclusions, Control and Optimization
Similarity:
In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.
Ky Fan (1987)
Mathematische Zeitschrift
Similarity:
William L. Paschke (1978)
Mathematische Zeitschrift
Similarity:
Yeshawant V. Thosar (1954)
Mathematische Zeitschrift
Similarity:
So-Chin Chen (1988)
Mathematische Zeitschrift
Similarity:
B.H. Neumann (1958)
Mathematische Zeitschrift
Similarity:
L.J. Bunce, J. Hamhalter (1994)
Mathematische Zeitschrift
Similarity:
J. Chabrowski (2007)
Colloquium Mathematicae
Similarity:
We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.
Jan Chabrowski, Jianfu Yang (2005)
Annales Polonici Mathematici
Similarity:
We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.
Hichem Ben-El-Mechaiekh, Robert Dimand (2007)
Banach Center Publications
Similarity:
Yoshihiro Nakamura, Fumio Hiai (1987)
Mathematische Zeitschrift
Similarity:
Otto Moeschlin (2006)
Banach Center Publications
Similarity:
H. Woźniakowski (1971)
Applicationes Mathematicae
Similarity: