Displaying similar documents to “The Genus of Curves in P4 and P5.”

Descent via (3,3)-isogeny on Jacobians of genus 2 curves

Nils Bruin, E. Victor Flynn, Damiano Testa (2014)

Acta Arithmetica

Similarity:

We give a parametrization of curves C of genus 2 with a maximal isotropic (ℤ/3)² in J[3], where J is the Jacobian variety of C, and develop the theory required to perform descent via (3,3)-isogeny. We apply this to several examples, where it is shown that non-reducible Jacobians have non-trivial 3-part of the Tate-Shafarevich group.

The irregularity of ruled surfaces in three dimensional projective space.

Luis Giraldo, Ignacio Sols (1998)

Collectanea Mathematica

Similarity:

Let S be a ruled surface in P3 with no multiple generators. Let d and q be nonnegative integers. In this paper we determine which pairs (d,q) correspond to the degree and irregularity of a ruled surface, by considering these surfaces as curves in a smooth quadric hypersurface in P5.