The Projection onto the Center of Operators in a Banach Lattice.
Jürgen Voigt (1988)
Mathematische Zeitschrift
Similarity:
Jürgen Voigt (1988)
Mathematische Zeitschrift
Similarity:
W. Arendt, H.H. Schaefer, M. Wolff (1978/79)
Mathematische Zeitschrift
Similarity:
C. B. Huijsmans, B. de Pagter (1991)
Compositio Mathematica
Similarity:
A. El Kaddouri, Mohammed Moussa (2013)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity:
We give a brief survey of recent results of order limited operators related to some properties on Banach lattices.
Wójtowicz, Marek (2003)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Beata Randrianantoanina (2005)
Colloquium Mathematicae
Similarity:
We give a characterization of conditional expectation operators through a disjointness type property similar to band-preserving operators. We say that the operator T:X→ X on a Banach lattice X is semi-band-preserving if and only if for all f, g ∈ X, f ⊥ Tg implies that Tf ⊥ Tg. We prove that when X is a purely atomic Banach lattice, then an operator T on X is a weighted conditional expectation operator if and only if T is semi-band-preserving.
Mezrag, Lahcène (2006)
Serdica Mathematical Journal
Similarity:
2000 Mathematics Subject Classification: 46B28, 47D15. In this paper we introduce and study the lp-lattice summing operators in the category of operator spaces which are the analogous of p-lattice summing operators in the commutative case. We study some interesting characterizations of this type of operators which generalize the results of Nielsen and Szulga and we show that Λ l∞( B(H) ,OH) ≠ Λ l2( B( H) ,OH), in opposition to the commutative case.
J. Szulga (1979)
Colloquium Mathematicae
Similarity:
Rosalind Reichard (1972)
Mathematische Zeitschrift
Similarity:
Beatriz Porras Pomares (1986)
Extracta Mathematicae
Similarity: