Disjointness preserving and diffuse operators

C. B. Huijsmans; B. de Pagter

Compositio Mathematica (1991)

  • Volume: 79, Issue: 3, page 351-374
  • ISSN: 0010-437X

How to cite

top

Huijsmans, C. B., and de Pagter, B.. "Disjointness preserving and diffuse operators." Compositio Mathematica 79.3 (1991): 351-374. <http://eudml.org/doc/90111>.

@article{Huijsmans1991,
author = {Huijsmans, C. B., de Pagter, B.},
journal = {Compositio Mathematica},
keywords = {disjointness preserving operators between Banach lattices; Riesz space; Dedekind complete vector lattice; Riesz homomorphisms; averaging band projection; compact lattice homomorphisms; spectral theory},
language = {eng},
number = {3},
pages = {351-374},
publisher = {Kluwer Academic Publishers},
title = {Disjointness preserving and diffuse operators},
url = {http://eudml.org/doc/90111},
volume = {79},
year = {1991},
}

TY - JOUR
AU - Huijsmans, C. B.
AU - de Pagter, B.
TI - Disjointness preserving and diffuse operators
JO - Compositio Mathematica
PY - 1991
PB - Kluwer Academic Publishers
VL - 79
IS - 3
SP - 351
EP - 374
LA - eng
KW - disjointness preserving operators between Banach lattices; Riesz space; Dedekind complete vector lattice; Riesz homomorphisms; averaging band projection; compact lattice homomorphisms; spectral theory
UR - http://eudml.org/doc/90111
ER -

References

top
  1. [Ab] Y.A. Abramovich, Multiplicative representation of disjointness preserving operators, Indag. Math.45 (1983), 265-279. Zbl0527.47025MR718068
  2. [AB] C D. Aliprantis, O.Burkinshaw, Positive Operators, Academic Press, Orlando (1985). Zbl0608.47039MR809372
  3. [A1] W. Arendt, Ueber das Spektrum regulärer Operatoren, thesis, Tübingen (1979). 
  4. [A2] W. Arendt, Spectral properties of Lamperti operators, Indiana Univ. Math. J.32 (1983), 193-215. Zbl0488.47016MR690185
  5. [AH] W. Arendt, D.R. Hart, The spectrum of quasi-invertible disjointness preserving operators, J. Funct. An.68 (1986), 149-167. Zbl0611.47030MR852658
  6. [BR1] G.J.H.M. Buskes, van Rooij A.C.M., Hahn-Banach for Riesz homomorphisms, Indag. Math.51 (1989), 25-34. Zbl0683.46007MR993676
  7. [BR2] G.J.H.M. Buskes, A.C.M. van Rooij, Small Riesz spaces, Math. Proc. Camb. Phil. Soc.105 (1989), 523-536. Zbl0683.46013MR985689
  8. [G] H. Gordon, Decomposition of linear functionals in Riesz spaces, Duke Math. J.27 (1960), 597-606. Zbl0107.08604MR117525
  9. [H1] D.R. Hart, Disjointness preserving operators, thesis, Pasadena (1983). 
  10. [H2] D.R. Hart, Some properties of disjointness preserving operators, Indag. Math.47 (1985), 183-197. Zbl0576.47021MR799079
  11. [HP] C.B. Huijsmans, B. de Pagter, The inverse of an orthomorphism, preprint 8, Leiden (1988). 
  12. [HS] E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer, Berlin (1965). Zbl0137.03202MR367121
  13. [L] W.A.J. Luxemburg, University of Arkansas Lecture Notes 4,Fayetteville (1979). Zbl0431.46003MR568706
  14. [LS] W.A.J. Luxemburg, A.R. Schep, A Radon Nikodym type theorem for positive operators and a dual, Indag. Math.40 (1978), 357-375. Zbl0389.47018MR507829
  15. [LZ] W.A.J. Luxemburg, A.C. Zaanen, Riesz Spaces I, North-Holland, Amsterdam (1971). Zbl0231.46014MR511676
  16. [M] M. Meyer, Les homomorphismes d'espaces vectoriels réticulés complexes, C.R. Acad. Sc. Paris292 (1981), 793-796. Zbl0467.46007MR622421
  17. [P1] B. de Pagter, Compact Riesz homomorphisms, preprint Leiden (1979). 
  18. [P2] B. de Pagter, A note on disjointness preserving operators, Proc. Amer. Math. Soc.90 (1984), 543-549. Zbl0541.47032MR733403
  19. [PS] B de Pagter, A. R. Schep, Measures of non-compactness of operators on Banach lattices, J. Funct. Anal.78 (1988), 31-55. Zbl0651.47023MR937631
  20. [PW] B. de Pagter, W. Wnuk, Some remarks on Banach lattices with non-atomic duals, Indag. Math., New Series 1 (1990), 391-395. Zbl0731.46008MR1075887
  21. [S1] A.R. Schep, Order continuous components of operators and measures, Indag. Math.40 (1978), 110-117. Zbl0374.47016MR477876
  22. [S2] A.R. Schep, Positive diagonal and triangular operators, J. Operator Theory3 (1980), 165-178. Zbl0452.47040MR578937
  23. [Sch] H.H. Schaefer, Banach Lattices and Positive Operators, Grundlehren 215, Springer, Berlin (1974). Zbl0296.47023MR423039
  24. [V1] J. Voigt, The projection onto the center of operators in a Banach lattice, Math. Z.199 (1988), 115-117. Zbl0631.47027MR954756
  25. [V2] J. Voigt, A note on the projection onto the center of operators in a Banach lattice, preprint Oldenburg (1989). MR954756
  26. [W1] L.W. Weis, Decompositions of positive operators, North-Holland Mathematical Studies 90, Functional Analysis: Surveys and recent results III, 95-115, Amsterdam (1984). Zbl0549.47016MR761375
  27. [W2] L.W. Weis, On the representation of order continuous operators by random measures, Trans. Amer. Math. Soc.285 (1984), 535-563. Zbl0599.47042MR752490
  28. [Wi] A.W. Wickstead, Extremal structure of cones of operators, Quart. J. Math. Oxford32 (1981), 239-253. Zbl0431.47024MR615198
  29. [Z] A.C. Zaanen, Riesz Spaces II, North-Holland, Amsterdam (1983). Zbl0519.46001MR704021

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.