Displaying similar documents to “The Density Condition in Subspaces and Quotients of Frechet Spaces.”

The density condition in quotients of quasinormable Fréchet spaces

Angela Albanese (1997)

Studia Mathematica

Similarity:

It is proved that a separable Fréchet space is quasinormable if, and only if, every quotient space satisfies the density condition of Heinrich. This answers positively a conjecture of Bonet and Dí az in the class of separable Fréchet spaces.

Density conditions in Fréchet and (DF)-spaces.

Klaus-Dieter. Bierstedt, José Bonet (1989)

Revista Matemática de la Universidad Complutense de Madrid

Similarity:

We survey our main results on the density condition for Fréchet spaces and on the dual density condition for (DF)-spaces (cf. Bierstedt and Bonet (1988)) as well as some recent developments.

Inductive duals of distinguished frechet spaces

José Bonet, Susanne Dierolf (1996)

Revista de la Real Academia de Ciencias Exactas Físicas y Naturales

Similarity:

The purpose of this note is to give an example of a distinguished Fréchet space and a non-distinguished Fréchet space which have the same inductive dual. Accordingly, distinguishedness is a property which is not reflected in the inductive dual. In contrast to this example, it was known that the properties of being quasinormable or having the density condition can be characterized in terms of the inductive dual of a Fréchet space.