On the Dirichlet's problem for the Navier-Stokes equations on a Riemannian manifold.
Milan D. Duric (1966)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Milan D. Duric (1966)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Milan Đ. Đurić (1966)
Publications de l'Institut Mathématique
Similarity:
Milan D. Duric (1966)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Milan Đ. Đurić (1969)
Publications de l'Institut Mathématique
Similarity:
Milan Duric (1965)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Rastko Stojanović (1956)
Publications de l'Institut Mathématique
Similarity:
Jiří Neustupa, Patrick Penel (2008)
Banach Center Publications
Similarity:
We formulate a boundary value problem for the Navier-Stokes equations with prescribed u·n, curl u·n and alternatively (∂u/∂n)·n or curl²u·n on the boundary. We deal with the question of existence of a steady weak solution.
V. M. Soundalgekar, B. W. Martin, S. K. Gupta, I. Pop (1976)
Publications de l'Institut Mathématique
Similarity:
Chérif Amrouche, Patrick Penel, Nour Seloula (2013)
Annales mathématiques Blaise Pascal
Similarity:
This article addresses some theoretical questions related to the choice of boundary conditions, which are essential for modelling and numerical computing in mathematical fluids mechanics. Unlike the standard choice of the well known non slip boundary conditions, we emphasize three selected sets of slip conditions, and particularly stress on the interaction between the appropriate functional setting and the status of these conditions.
Milan D. Duric (1969)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
I. Lukacevic (1977)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
B. Vujanovic, D. Dukic (1971)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Rainer Picard (2008)
Banach Center Publications
Similarity:
The classical Stokes system is reconsidered and reformulated in a functional analytical setting allowing for low regularity of the data and the boundary. In fact the underlying domain can be any non-empty open subset Ω of ℝ³. A suitable solution concept and a corresponding solution theory is developed.
I. Lukačević (1975)
Publications de l'Institut Mathématique
Similarity:
R. H. Dyer, D. E. Edmunds (1971)
Colloquium Mathematicae
Similarity:
M. Pulvirenti (2008)
Bollettino dell'Unione Matematica Italiana
Similarity:
This talk, based on a research in collaboration with E. Caglioti and F.Rousset, deals with a modified version of the two-dimensional Navier-Stokes equation wich preserves energy and momentum of inertia. Such a new equation is motivated by the occurrence of different dissipation time scales. It is also related to the gradient flow structure of the 2-D Navier-Stokes equation. The hope is to understand intermediate asymptotics.
Milan Đ. Đurić (1966)
Publications de l'Institut Mathématique
Similarity:
Jishan Fan, Xuanji Jia, Yong Zhou (2019)
Applications of Mathematics
Similarity:
This paper proves a logarithmic regularity criterion for 3D Navier-Stokes system in a bounded domain with the Navier-type boundary condition.